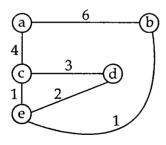
MCA (Revised)

Term-End Examination

June, 2011

"MCS-031 : DESIGN AND ANALYSIS OF ALGORITHM

Maximum Marks: 100 Time: 3 hours Question No. 1 is compulsory. Attempt any three Note: from the rest of the questions. Arrange the following growth rates in 1. (a) 4 increasing order: O (3^n) , O (n^2) , O (1), O (n log n) (b) Briefly discuss three basic actions and 4 instructions that build a program in Von Newmann architecture machine. Write a recursive algorithm that finds the (c) 4 sum of first n natural numbers. Explain briefly The Fermat's Last Theorem. (d) 4 Using Principle of Mathematical Induction, (e) 4 Prove that the sum $2^0 + 2^1 + \dots + 2^n$ is $2^{n+1}-1$ for all $n \ge 1$. (f) Using Insertion Sort or Bubble Sort, sort the 4 following sequence in increasing order: 35, 37, 18, 15, 40, 12


(g) Define Knapsack Problem and cite one 4 instance of the problem.

4

5

5

- (h) Consider a (hypothetical) country in which only notes available are of denominations 10, 40 and 60. Using Greedy algorithm, how do we collect an amount of 80.
- (i) Briefly explain Kruskal's OR Prim's 4 algorithm for finding minimal spanning tree of a graph.
- (j) Name four undecidable problems, each with 4 brief description.
- 2. (a) Using Dijkstra's algorithm, find the 10 minimum distances of all the nodes from node 'b' which is taken as the source node, for the following graph.

- (b) Find a regular expression for the language {\lambda, a, a b b, a b b b, a b b b b b,}
- (c) Briefly discuss Chomsky classification for Grammars.

3. (a) Trace how BFS (Breadth - First Search) 8 traverses, i.e, discovers and visits the graph given below when starting at node A.

- (b) Write pseudo-code for Depth-First search. 5
- (c) Find the value of (12)³¹ using not more than SIX multiplications and/or divisions.
- 4. (a) Write a program that computes the length of the diagonal of a right angled triangle, the length of the two sides of which are given.
 - (b) For the function $f(x) = 4x^3 + 6x + 1$ show that (i) $f(x) = O(x^4)$ but (ii) $x^4 \ne O(f(x))$
 - (c) Sort the following sequence of numbers using Quick Sort : 8, 6, 4, 12, 11, 5, 7 and 9.

7

- 5. (a) Design a Turing Machine that recognises the languages of all strings of even lengths over the alphabet {c, d}.
 - (b) For each of the following pairs of lists, 10 discuss whether PCP (Post Correspondence Problem) has a solution:
 - (i) List $A = (b, b \ a \ b \ b, b \ a)$ and List $B = (b \ b \ b, b \ a, a)$
 - (ii) List C = (a b, b, b) and D = (a b b, b a, b b)