M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination December, 2010

MMTE-006: CRYPTOGRAPHY

Time: 2 hours Maximum Marks: 50

Note: Answer any five out of six questions. Calculators are not allowed.

- 1. (a) Explain each of the following terms with an example:
 - (i) Plain text
 - (ii) Cipher text
 - (iii) Key
 - (iv) Encryption algorithm.
 - (b) Explain the encryption and decryption processes in the Cipher Feed Back (CFB) mode of operation of block ciphers. What advantage does CFB have when compared to ECB and CBC modes?

- 2. (a) Explain the Merkle Damgard 5 strengthening. Assuming a block size of 64 bits and that we use 8 bits to represent a character, what string will you get by applying Merkle Damgard strengthening to the string "digital signatures"?
 - (b) Suppose you know that n = 4307 is a product of 2 primes and $\phi(n) = 4176$. Factorise 4307 using this information.
 - (c) Encrypt the text "MISSION POSTPONED" 2 using affine cipher with key (3,2).
- 3. (a) Explain how you will construct a LFSR 5 corresponding to a recurrence

$${x_{n+k} \equiv a_{k-1}x_{n+k-1} + a_{k-2}x_{n+k-2} + \dots + a_{o}x_{n} \pmod{2}}.$$

Construct the LFSR corresponding to the recurrence

$$x_{n+5} \equiv x_{n+4} + x_{n+2} + x_{n+1} + x_n \pmod{2}$$
.

(b) If $f(x) = x^4 + x^3 + x + 1$ and $g(x) = x^3 + x^2 + x + 1$ 5 are polynomials in 'Q' [x], use the extended Euclidean algorithm to find p(x) and q(x) in 'Q' [x] such that p(x)f(x) + q(x)g(x) = h(x) where h(x) is the gcd of f(x) and g(x).

2

4. (a) A 64 bit key for the DES algorithm is as 6 follows:

 10011101
 10101101

 10100001
 10011000

 11000100
 10010111

 01011011
 10110000

The key permutation table is as follows:

57	49	33	25	17	9	1	58	50	42	34	26	18
10	2	59	43	35	27	19	11	3	60	52	44	36
63												
4	6	61	45	37	29	21	13	5	28	20	12	4

The table of key shifts is as follows:

Round																
Shift	1	1	2	2	2	2	2	2	1	2	2	2	2	.2	2	

Key selection table is as follows:

14	17	11	24	1	5	3	28	15	6	21	10
23	19	12	4	26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40	51	45	33	48
44	49	39	56	34	33	46	42	50	36	29	32

- (i) Check whether the key is error free using the parity bits.
- (ii) Find the keys for the first two rounds.

4

(b) Decrypt the following cipher text which was encrypted using the vigenere cipher with the keyword "SECRET".:

"KIPUWNHTNZIL" Is the Vigenere cipher a transposition cipher or a substitution cipher? Justify your answer.

- 5. (a) Explain the (Fermat) pseudo prime test.
 Prove that, if a natural number n fails the pseudo prime test for a base b, then it fails the test for at least half of the possible bases
 b∈ (Z/nZ)*.
 - (b) State the Coulomb postulates for pseudo 3 random bit sequences.
 - (c) Define a cryptographic hash function. 2
- 6. (a) Check whether the number 241 passes the Rabin Miller test with respect to the base b=3.
 - (b) Let f(x) be the irreducible polynomial $x^4 + x + 1 \in \mathbb{Z}_2[X]$. Find the order of the element $\alpha = x + \varkappa[f(x_1)]$ in the multiplicative $\mathbb{Z}_2[X]$

group of
$$\frac{Z_2[X]}{(f(x))}$$
.

(c) Explain the El-Ghamal cryptosystem, clearly stating which information is kept private and which information is made public.