M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
December, 2010

MMTE-005: CODING THEORY

Time: 2 hours Maximum Marks: 50

Note: Question No. 1 is compulsory. Do any four questions from question number 2 to 6. Use of calculator is not allowed.

- 1. (a) Show that Hamming distance is a metric. 4
 - (b) Show that in a linear code the minimum distance is equal to the minimum weight of the code.
 - (c) Let $G = \begin{pmatrix} 0001212 \\ 0110011 \\ 1010101 \end{pmatrix}$ be a generator matrix 3

of the ternary linear code C. Find the codewords of the code C

2. (a) Find gcd $(x^6 + x^5 + x^4 + x^3 + x + 1)$, 5 $x^5 + x^3 + x^2 + x$ in \mathbb{F}_2 [X]. Find a(x) and b(x) such that gcd $(x^6 + x^5 + x^4 + x^3 + x + 1)$, $x^5 + x^3 + x^2 + x$ = a(x) $(x^6 + x^5 + x^4 + x^3 + x + 1) + b(x)$ $(x^5 + x^3 + x^2 + x)$.

- (b) Which of the following codes are cyclic?
 - (i) (0000, 0101, 1010)
 - (ii) (00, 01, 10, 11)

Give reasons for your answer.

(c) Define a low density parity check code (LDPC) and give an example.

2

- 3. (a) List all the cyclic codes C_i of length 7 over F_2 together with their generator polynomials G_i (x), their generating idempotents G_i (x) and their defining sets of each code relative to the primitive root G_i such that G_i + G_i + 1 = 0 i.e. G_i = G_i + 1
 - (b) Let C be an Reed-Solomon code over \mathbb{F}_g of length n = q 1 and designed distance δ . Prove that C is MDS code
- 4. (a) Let C be the binary [15,5] narrow-sense BCH code of designed distance $\delta = 7$, Which has defining set $T = \{1,2,3,4,5,6,8,9,10,12\}$ Using primitive 15th root of unity α , such that $\alpha^4 = \alpha + 1$ and the generater polynomial $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$ of C. If $y(x) = x + x^4 + x^5 + x^7 + x^9 + x^{12}$ is received word, find the transmitted codeword.
 - (b) Let C be any self-dual [12, 6, 6] ternary code. 4
 Find the weight enumerator polynomial of C.

- 5. (a) Let $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$. Show that 2+4 f(x) is irreducible over \mathbb{F}_2 . Find the elements of $\frac{\mathbb{F}_2(x)}{(f(x))}$
 - (b) Show that the \mathbb{Z}_4 linear codes with generator matrices

$$G_1 = \begin{pmatrix} 1113 \\ 0202 \\ 0022 \end{pmatrix} \text{ and } G_2 = \begin{pmatrix} 1111 \\ 2002 \\ 0202 \end{pmatrix}$$

are monomially equivalent

- 6. (a) Define Convolutional Code and give an 4 example
 - (b) State the Two-Way a Posteriori Probability 6 Decoding algorithm.