M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination December, 2010

MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time: 2 hours Maximum Marks: 50

Note: Attempt any five questions. All questions carry equal marks. Use of calculator is not allowed.

- (a) Propose a set of intensity slicing 4
 transformations capable of producing all
 individual planes of an 8 bit monochrome
 image.
 - (b) What effect would setting to zero the lower - order bit planes have on the histogram of an image?
 - (c) Explain with an example that the discrete 4 histogram equalization does not in general yield a flat histogram.
- (a) Explain the decimation in time FFT 5
 implementation. Write all the mathematical
 steps involved in detail.

- (b) Obtain the Fourier transform of the following 2 D functions. 2+3=5
 - (i) $\nabla^2 f(t, z)$

(ii)
$$A2\pi\sigma^2 e^{-2\pi^2\sigma^2(t^2+z^2)}$$

3. (a) Obtain the mean and variance of the following probability density functions 3+3=6

(i)
$$p(Z) = \begin{cases} \frac{2}{b} (Z-a) \overline{e}^{(Z-a)^2/b}; Z \ge a; Z < a \\ O \end{cases}$$

(ii) p (Z)=
$$\begin{cases} \frac{1}{b-a} ; a \le Z b. \\ O; otherwise. \end{cases}$$

(b) Define the following filters

1+1+2=4

- (i) Contraharmonic mean filter
- (ii) Geometric mean filter
- (iii) Alpha trimmed mean filter.
- 4. (a) Find the Radon transforms of the following functions by applying the projection theorem.

(i)
$$e^{-\frac{\pi}{x^2+y^2}} \forall x,y$$

(ii)
$$\cos 2\pi(\alpha x + \beta y), \sqrt{x^2 + y^2} \le a.$$

Assume the given functions are zero outside the region of support defined.

- (b) Explain the Marr Hildreth edge detector. 4
 What is the mask used to approximate this operation?
- 5. (a) Consider an image given in matrix form as 5 follows:

h (m, n) =
$$\delta$$
 (m,n) + $\frac{1}{4} \delta$ (m-1,n) + $\frac{1}{4} \delta$

$$(m+1, n) + \frac{1}{4} \delta(m, n-1) + \frac{1}{4} \delta(m, n+1).$$

Assume image to be 0, outside the window. Find the effect of applying the mark (which is h(m,n) itself).

- (b) Explain how motion can be used for segmentation. Briefly explain one spatial and one Frequency domain technique to perform segmentation using motion.
- 6. (a) Given a source with following symbols and corresponding probabilities.

	P(a _i).
a ₁	0.6
a ₂	0.3
a ₃	0.08
a ₄	0.02

Obtain the average length for the following coding schemes :

- (i) Huffman
- (ii) Arithmetic
- (iii) Zeroth order exponential Golomb code.
- (b) Draw the block diagram of a typical motion 4 compensated video encoder. Briefly explain the functioning of such an encoder.

5

- 7. (a) Explain the use of principal components for image description/representation. Clearly bring out the underlying mathematics.
 - (b) The following pattern classes have Gaussian probability density functions

$$W_1: \{(-1, 0)^T, (0, -1)^T, (1, 0)^T, (0, 1)^T\}.$$

$$W_2: \{(-2, 0)^T, (0, -2)^T, (2, 0)^T, (0, 2)^T\}.$$

Assume that $P(W_1) = P(W_2) = \frac{1}{2}$ and obtain the equation of the Bayes decision boundary between these two classes. Sketch the boundary.