No. of Printed Pages: 4

00200

MMTE-001

M.Sc. (Mathematics With Applications in Computer Science) M.sc. (MACS)

Term-End Examination December, 2010

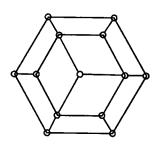
MMTE-001: GRAPH THEORY

Time: 2 hours Maximum Marks: 50

Note: Question No. 1 is compulsory. Do any four questions out of question No. 2 to 7. Calculators are not allowed.

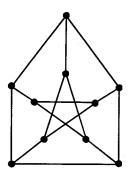
- State whether the following statements are true or false? Justify your answer.
 2x5=10
 - (a) Any two graphs with the same degree sequence are isomorphic.
 - (b) There is a 3 regular graph with 9 vertices.
 - (c) A graph in which every vertex is of even degree in Eulerian.
 - (d) Any tree is 2 colourable.
 - (e) $k_{m,n}$ is Hamiltonian for all m, $n \ge 1$.
- (a) If G is a simple graph with at least two vertices, prove that G must contain two or more vertices of same degree.

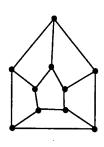
- (b) (i) For which values of n is k_n Eulerian?2Justify your answer.
 - (ii) For which values of m, n is $k_{m, n}$ Eulerian? Justify your answer.
- (c) Show that any edge of a graph G is a cut-edge if and only if it belongs to no cycle.
- (d) Show that there is a unique path between any two distinct vertices of a non-trivial tree.
- 3. (a) Show that the complete graph k_n can be expressed as the union of k bipartite graphs if $n \le 2^k$.
 - (b) Prove that, a bipartite graph with an odd number of vertices, is never Hamiltonian.
 Deduce that the following graph is non-Hamiltonian.



4. (a) Let G be a simple n-vertex graph with $\frac{n-1}{2} \le \delta(G) \text{ where } \delta(G) \text{ is the minimum}$ vertex degree of G. Then show that G is connected.

(b) Determine whether the following two graphs are isomorphic. Justify your answer.

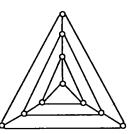




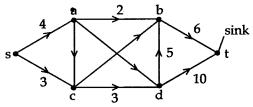
3

- (c) Does there exist a simple graph with degree 4 sequence
 - (i) (3, 3, 5, 5, 5, 5)
 - (ii) (2, 3, 3, 4, 5, 5). Justify your answer.
- 5. (a) Write all the steps in Kruskal's algorithm. 3
 - (b) Let k > 0. prove that every k regular 4 bipartite graph has a perfect matching.
 - (c) Prove that every tree has at most one perfect 3 matching.
- 6. (a) Construct a graph G for which k(G) = 1 3 k'(G) = 2 and $\delta(G) = 3$. Justify your choice of G.

(b) Find the chromatic number of the following 3 graph.



(c) In the network given below, find a 4 maximum flow from s to t



7. (a) Find the dual of the following graph. Justify 4 your answer.

(b) Find all self complementary graphs having5 vertices. Justify your answer

4

2

(c) Let G be a graph with n vertices and e edges. Let $\delta(G)$, $\Delta(G)$ be the minimum and maximum degree of G respectively. Prove

that
$$\delta(G) \le \frac{2e}{n} \le \Delta(G)$$
.