69200

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2010

MMT-005: COMPLEX ANALYSIS

Time: 1½ hours Maximum Marks: 25

Note: Question No. 1 is compulsory. Attempt any three questions from question number 2 to 5. Use of calculator is not allowed.

- State giving reasons whether the following 5x2 statements are true or false:
 - (a) $\int_{C} z^2 dz = 0$ for any simple closed Contour C.
 - (b) $f(z) = \sinh z$ is bounded in the complex plane.
 - (c) $f(z) = \tan z$ has a removable singularity at $z = \frac{\pi}{2}$.
 - (d) If f(z) is an analytic function such that real part of f(z) is 1 then f(z) = 1.
 - (e) $f(z) = \frac{2z-1}{2-z}$ has a unique point of maximum modulus in $D = \{z : |z| \le 1\}$.
- 2. (a) Using $\epsilon \delta$ definition of limit prove that 3 $\lim_{z \to \infty} \left(\frac{z+1}{z^2} \right) = 0.$

(b) Let f(z) be defined as

2

$$f(z) = \begin{cases} \frac{\overline{z}}{z}^2 & , z \neq 0 \\ 0 & , z = 0. \end{cases}$$

Show that f'(0) does not exist.

3. (a) Find the set of all those complex numbers which satisfy the following equation: $e^z = -2$.

(b) Let C denote the circle |z| = 2, described in the Counter-Clockwise direction. Show that

$$\left| \int_{C} \frac{\text{Logz}}{z^2} dz \right| \leq \pi (\underline{\pi + lnz}).$$

4. (a) Let $f(z) = \frac{10z^3}{z^2(z^2+9)}$ and let 2

 C_1 denote the circle |z| = 2 in the counter clockwise direction and C_2 is the circle |z| = 1 in the clockwise direction. Then

prove that
$$\int_{C_1} f(z) dz = - \int_{C_2} f(z) dz$$

(b) Find the image of the square with vertices at (-1+i), (1+i), (1-i) and -(1+i) under the transformation $\omega = \mathrm{e}^{\frac{i\pi}{4}}$ (z+1+i).

5. Show that
$$\int_{0}^{2\pi} \frac{2d\theta}{\left(2+\sqrt{2} \sin \theta\right)} = 2\sqrt{2} \pi$$

