M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) 0021

Term-End Examination

December, 2010

MMT-002: LINEAR ALGEBRA

Maximum Marks: 25 Time: 1½ hours

Question No. 5 is compulsory. Answer any three Note: questions from question Nos. 1 to 4. Use of calculators is **not** allowed.

- Check whether the matrices $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ and (a) 1. $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ are similar or not.
 - Find the spectral decomposition of the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by 3 (b) T(x, y, z) = (6x - y - 2z, -x + 5y - z, -2x - y + 6z)
- Find a QR decomposition of the matrix (a) 2. 2

3

31/2

11/2

3

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{bmatrix} 1.1 & 0.4 \\ -0.104 & 0.5 \end{bmatrix} \begin{bmatrix} x_k \\ y_k \end{bmatrix}$$

Where x_k and y_k are populations of the predators and the prey, respectively, at time k. Find the long term behaviour of the

population vector.
$$\begin{bmatrix} x_k \\ y_k \end{bmatrix}$$

3. (a) Compute the Jordan form of the matrix

$$A = \begin{bmatrix} 4 & -2 & 0 & 1 \\ 5 & -2 & 0 & 1 \\ 2 & -1 & 1 & 0 \\ 2 & -1 & 0 & 1 \end{bmatrix}$$

(b) Find a least squares solution of the system
$$Ax = b$$
, where

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

4. (a) Find a basis of each eigenspace of the operator
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, defined by $T(x,y,z) = (2x + y, y - z, 2y + 4z)$. Is T diagonalizable? Give reasons for your answer.

(b) Find the singular values of the matrix

2

$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

- 5. Which of the following statements are true, and which are false? Give reasons for your answers.
 - (i) A nilpotent operator is diagonalisable.
 - (ii) The QR decomposition of any non-singular matrix is unique.
 - (iii) There is a 2x2 unitary matrix with eigen values 2 and $\frac{1}{2}$.
 - (iv) If the eigen values of A ε M₂ (C) are 3,2, set (e^A) = e^6 .
 - (v) If A ε M_n (C) such that tr (AA*) = 0, then A = 0.

•