No.	of	Printed	Pages	:	4
-----	----	---------	--------------	---	---

BME-053

DIPLOMA IN MECHANICAL ENGINEERING (DME)

00782

Term-End Examination December, 2010

BME-053: APPLIED THERMAL ENGINEERING

Time: 3 hours Maximum Marks: 70

Note: Answer any seven questions.

- 1. (a) Derive an Expression for the thermal efficiency of an Otto cycle with suitable sketch.
 - (b) Air enters an Otto cycle at 1.0 bar and 27°C.

 The compression ratio is 7.5. The temperature of air after adiabatic compression is 277°C. Find the thermal efficiency, the maximum pressure; the maximum temperature and the mean effective pressure of the cycle.
- 2. (a) Discuss the merits and demerits of two 4 stroke Internal Combustion Engine.
 - (b) What do you mean by 'Carburation'?Explain the working of simple Carburator with neat sketch.

- 3. (a) Enumerate the desirable properties of a good fuel for a petrol Engine.
 - (b) Explain the working of a fuel injector with neat sketch.

4

6

- 4. (a) What are the effects of detonation on a diesel engine and when does it occur?
 - (b) What is necessity for cooling IC Engines?Describe the working of a forced circulation water cooling system of an I.C. engine. 2+4=6
- 5. (a) What are the desirable properties of a good 4 lubricant?
 - (b) What is 'scavenging' in an I.C. engine?

 Compare the scavenging in a two stroke with four stroke I.C. Engine. 2+4=6
- 6. (a) What are the different methods of 4 determining the power absorbed in overcoming friction in an I.C. Engine?
 - (b) A four cylinder four stroke Petrol Engine Working on the Otto cycle consumes 7 kg of petrol per hour. The compression ratio of the engine is 5. The thermal efficiency of the engine is 62% of the air standard efficiency. Calculate the thermal and air standard efficiencies. The calorific value of the fuel is 45000 kJ/kg. Determine the Power developed per cylinder.

- 7. (a) Define Volumetric Efficiency.
 - (b) A single stage single acting air compressor takes in air at 1 bar at a rate of 3m³/min and delivers it with a pressure ratio of 10. If the Compression and Expansion follow the law PV^{1.3}=C. Determine the power required if the clearance volume is 6% of the swept volume is 14.5 litres. Determine the speed of compressor and the volumetric efficiency.
- (a) Explain why staging is done in 4 reciprocating air compressor.
 - (b) Derive an Expression for the Optimum 6
 Pressure ratio giving maximum specific output in simple cycle gas turbine.

A gas turbine is designed to operate under

- (a) State merits and demerits of closed cycle gas turbine over open cycle gas turbine.
 - the following conditions:

 Maximum temperature = 650° C r_p = 5.

 Inlet pressure and temperature = 1.05 bar and 15° C.

Turbine isentropic efficiency = 86%. Compressor isentropic efficiency = 82%. Mechanical efficiencies of the compressor and turbine = 99%.

Efficiency of combustion = 98%.

(b)

7

3

Determine the improvement in Plant thermal efficiency that would result from the addition of heat exchanger of 65% effectiveness. Allow the pressure loss of 0.905 bar in the heat exchanger for air Cp = 1.005 and Cp = 1.13kJ/kg/k for gas. Assume that in the heat exchanger mean specific heat of the Exhaust products and air is same.

10. Write short notes of the following:

10

- (a) Knocking.
- (b) Turbo Charging.
- (c) Clearance ratio.
- (d) Morse Test.