B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

01265

Term-End Examination December, 2010

ET-302(A): COMPUTER PROGRAMMING & NUMERICAL METHODS

Time: 3 hours Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks.

- 1. (a) Write the statement of Taylor's theorem. Use it to expand $f(x) = x^4 5x^3 + 5x^2 + x + 2$ in powers of (x 2).
 - (b) Find a real root of the equation: $3x + \sin x - e^x = 0$ by the method of false position correct to four decimal places. Choose suitable initial approximations.
- 2. (a) Give geometrical interpretation of Newton Raphson method to find a root of f(x) = 0.

 Use it to evaluate $\sqrt{12}$ to four decimal places.
 - (b) Find the inverse of the matrix A, using Gauss Jordan method

$$A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & -2 & 1 \end{bmatrix}$$

3. (a) Determine the eigen values and the corresponding eigen vectors for the matrix:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

(b) Construct a backward difference table from the data:

$$\sin 30^{\circ} = 0.5$$
, $\sin 35^{\circ} = 0.5736$,
 $\sin 40^{\circ} = 0.6428$, $\sin 45^{\circ} = 0.7071$,
Assuming third difference to be constant

Assuming third difference to be constant, find the value of sin 25°.

- 4. (a) By means of Lagrange's formula prove that $y_1 = y_3 0.3 (y_5 y_{-3}) + 0.2 (y_{-3} y_{-5})$
 - (b) Find the first and second derivatives of f(x) at x = 1.1 from the following tabulated values:

x :	1.0	1.2	1.4	1.6	1.8	2
f(x)	0.0000	0.1280	0.5440	1.2960	2.4320	4.000

- 5. (a) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using
 - (i) Simpson's one third rule.
 - (ii) Simpson's three eight rule.
 - (iii) Trapezoidal rule.

(b) Use Runge's method to approximate y when x = 1.1, given that

$$y = 1.2$$
 when $x = 1$ and

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x + y^2$$

- 6. (a) Write a FORTAN program to check whether a given number is prime or not.
 - (b) Draw a flow chart to arrange three numbers in decreasing order.
- 7. (a) Write a FORTAN program to compute average and standard deviation of numbers stored in an array.
 - (b) Explain with syntax different control constructs available in FORTAN.
- 8. Explain each of the following:
 - (i) Truncation error.
 - (ii) Convergence of an iterative method.
 - (iii) Common files used for storing data.
 - (iv) Local and global variables.
 - (v) Equivalence declaration.