B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination December, 2010

BAS-012: AERODYNAMICS - I

Maximum Marks: 70 Time: 3 hours O1 is COMPULSORY. Attempt any six questions from Note: the remaining. Establish reasons for the correctness of the 1. following statements in not more than five sentences. Cauchy-Reimann equations are always 2 (a) satisfied by flow for which stream function and velocity potential function exist. Kutta condition gives unique way of 2 (b) choosing the circulation for an aerofoil and there by determine lift. The continuity equation is equivalent to the 2 (c) . statement that the divergence of velocity vector must vanish. For a flow to be irrotational, a velocity 2 (d) potential function must exist. Constant stream function and velocity 2 (e) potential lines in a flow net are orthogonal.

- (a) Write the generalised equation of continuity 5
 in vector form considering compressibility
 and variation of density with time,
 - (b) In a compressible flow $u = x^3 y^3$ and $v = z^3 y^3$. Determine the third component assuming that origin is a stagnation point.
- 3. (a) Prove that streamlines can be represented 5 by the equation $\frac{dy}{dx} = \frac{v}{u}$
 - (b) If for a flow u = 3 m/sec and v = 6 m/sec; 5 determine the equation of streamlines passing through origin and the one passing through (2m,3m)
- 4. (a) What is a complex potential function? 5
 - (b) Derive the complex potential for uniform 5 stream flowing in any direction
- 5. Show that the transformation $G = \frac{1}{z}$, transforms 10 flow parallel to x-axis into circles. Find the radius and center of the circle.

- 6. Show that the transformation of radius a (a, b), 10 $G = z + \frac{b^2}{z}$, transforms circle to an ellipse.
- 7. Using kutta-zhukovsky theorem of circulation 10 and lift, derive expression for lift as $L = \rho UT$ where symbols have their usual meaning.
- 8. Prove that as per thin aerofoil theory, solution for flat plate is k=2u α $\frac{(1+\cos\theta)}{\sin\theta}$, where, k is the distribution of velocity over the elements of camberline, α is the angle of attack and U is the free stream velocity
- 9. List and describe subsonic wind tunnels, their components and functions
- **10.** Write short notes on :
 - (a) Assumption and utility of thin Aerofoil 5 theory
 - (b) Optical methods of flow visualisation in 5 wind tunnels