No. of Printed Pages: 4

BAS-002

01444

B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination December, 2010

BAS-002: APPLIED CHEMISTRY

Time: 3 hours

Maximum Marks: 70

Answer seven questions in all. Question number 1 is Note: compulsory. Use of calculator is allowed.

Use the following data:

$$h = 6.626 \times 10^{-34}$$
 Js

$$m_{e} = 9.1 \times 10^{-31}$$
 kg.

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$e = 1.6 \times 10^{-19}$$
 C.

Define any five of the following: 1.

5x2=10

- Photoelectric effect. (a)
- (b) Heisenberg's Uncertainty Principle
- (c) Molecular Orbitals
- (d) Standard hydrogen electrode
- (e) Degree of dissociation
- (f) Lattice energy
- (g) Luminiscence

- 2. Answer any two of the following:
 - (a) Calculate the energy required for the excitation of an electron from the ground state to the third excited state in hydrogen atom.
 - (b) Calculate the de Broglie wavelength 5 associated with an electron moving with a velocity of 6.6×10^7 ms⁻¹.
 - (c) Discuss the bonding in water molecule 5 invoking appropriate hybridisation scheme for the oxygen atom.
- 3. (a) Calculate the equilibrium constant for the 5 reaction:

$$2Fe_2O_3(s) = 4Fe(s) + 3O_2(g)$$

using the following data at 1393 k.

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

 $k = 0.0467$

$$2CO_2(g) \rightarrow 2CO(g) + O_2(g) k = 1.4 \times 10^{-12}$$

(b) What do you understand by the rusting of iron? How would you demonstrate the formation of Fe⁺⁺ and OH⁻ ions in the process of rusting? 4. For the cell

 $Zn(s)/Zn^{2+}$ (aq, 1.0M) || Cl^{-} (aq, 1.0M)/ Ag Cl(s)/Ag(s)

(a) Write the cell reaction.

- 3

- (b) Compute cell potential (Given $E^{\circ}Cl^{-}/2$ Ag Cl(s)/Ag=0.222 V $E^{\circ}Zn^{2+}/Zn=0.763$ V)
- (c) Predict whether the cell reaction is 2 spontaneous or not.
- (d) Compute the equilibrium constant for the cell reaction.

5. Give reasons for *any five* of the following: 5x2=10

- (a) Oxygen is paramagnetic in nature.
- (b) Fluorine has lower electron affinity as compared to chlorine.
- (c) H_3PO_3 has only two ionisable hydrogens.
- (d) Ag and Au are found in native state in nature.
- (e) Solution of alkali metals in liquid ammonia have high electrical conductivity.
- (f) Presence of calcium and magnesium in water make it hard.

- 6. (a) What are ligands? How are these classified?
 Give an example each of any two classes.

 2, 2, 1
 - (b) Dichromate ion is a good oxidising agent in acidic medium. 2, 3
 - (i) What is the oxidation state of chromium in $Cr_2 O_7^{2-}$ ion?
 - (ii) Give the reaction for the oxidation of Fe⁺⁺ ions by dichromate ion in acidic medium.
- 7. (a) What is petroleum refining? What is the role of catalytic cracking in petroleum refining? 2x5=10
 - (b) Describe the activated sludge method for treating waste-water.
- 8. (a) Describe the process of obtaining nitrogen from air. 2x5=10
 - (b) Explain the mechanism of addition polymerisation taking suitable example.
- 9. Write short notes on any two of the following:
 - (a) Effects of industrial pollution

2x5=10

- (b) Lead storage batteries
- (c) Bohr's atomic model
- (d) Thermo setting plastics