ADCA / MCA (III YEAR)

Term-End Examination

December, 2010

CS-13: OPERATING SYSTEMS

Time: 3 hours

00457

Maximum Marks: 75

Note: Question number 1 is compulsory. Answer any three questions from the rest.

- 1. (a) Given a set of cooperating process, some of which produce" data items (producers) to be "consumed" by others (consumers), with possible disparity between production and consumption rates. Devise a Synchronization protocol that allows both producers and consumers to operate concurrently at their respective service rates in such a way that produced items are consumed in that exact order in which they are produced (FIFO)
 - (b) Explain the functional specification for partition allocation of memory in a system with static partitioning. List the advantages and disadvantages of it. Also describe the necessary hardware support for protection.

7

8

(c) Consider the following set of processes, with the length of the CPU burst time given in milliseconds:

9

6

8

Process	Burst time
P_1	12
P_2	26
P ₃	5
P ₄	7
P ₅	14

All five processes arrive at time 0 in the order given. Draw Gantt charts illustrating the execution of the processes using FCFS, SJF and RR (quantum=2) scheduling. What is the turnaround time of each process for each of the scheduling algorithms? Also find the average waiting time for each algorithm.

- (d) Discuss any three common failures and their reasons in the distributed system.
- 2. (a) What is a scheduler? Explain the primary objective of scheduling. How many types of schedules coexist in a complex operating system? Explain.
 - (b) Explain the memory management scheme 7 that removes the requirement of contiguous allocation of physical memory.

CS-13

- 3. (a) Discuss various types of multiprocessor 8 interconnections. Also discuss about their operation, scalability, scheduling, interprocess communication and complexity.
 - (b) Discuss the organization of File Allocation 7 Table (FAT) with a suitable example. What kind of Fragmentation occurs in FAT.
- 4. (a) Describe the necessary conditions for a 9 deadlock avoidance using Banker's algorithm. Also discuss data structures for implementing this algorithm.
 - (b) Consider the following string of pages 6 1,2,2,0,5,1,7,3,4,1,4,3,6,7,0 find the no. of page faults for the following Page Replacement Algorithm. Consider frame size is, 3. FIFO, LRU, OPTIMAL.
- 5. (a) Describe Belady's anomaly with an 8 example. Does it occur with all page replacement algorithms?
 - (b) Explain the access matrix model of 7 protection of computer systems.