ADCA / MCA (II Yr.)

Term-End Examination

December, 2010

CS-07: DISCRETE MATHEMATICS

Time: 3 hours Maximum Marks: 75

Note: Question number 1 is compulsory. Attempt any three from the rest.

- 1. (a) Construct the truth table for $T(P \land \theta) \leftrightarrow 3$ $(TP \lor T\theta)$.
 - (b) Check whether the following, DeMorgan's 4 law involving ↑ and ↓.

 $T(P \uparrow \theta) \equiv TP \downarrow T\theta$ is true or not, where $P \uparrow \theta \equiv T (P \land \theta)$ and $P \downarrow \theta \equiv T (P \lor \theta)$.

(c) Let there be a graph G, with adjacency 5 matrix given as follows:

$$A (G) = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Check if G is connected.

(d) When two graphs are said to be isomorphic?

Show that the two graphs are isomorphic.

3

4

(e) Show that the pentagonal lattice

is not modular.

- (f) Express the number 11 in 1s and 2s 3 complement forms.
- (g) Let A = {1, 2, 3, 4} and 4

 R = { (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 3), (1, 3), (4, 1), (4, 4)}

Is R an equivalence relation on A.

(h) Write truth table for full adder and draw the circuit diagram of full adder using two half adder.

(a) Obtain Principal Conjunctive Normal Form 4
(PCNF) for

$$(Tp \rightarrow r) \land (q \leftrightarrow p)$$

- (b) Write the inverse, converse, contrapositive for $[p \land (p \rightarrow q)] \rightarrow q$
- (c) Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.
- (d) Find the validity of conclusion from given set of premises $\{P \leftrightarrow Q\}$

 $\neg P \rightarrow R$ and C : R

4

3

without truth table, (¬stands for NOT)

(a) Solve the following graph using Closest 6
 Insertion Method.

(b) Find minimum spanning tree using 6 Kruskal's algorithm for the graph given below.

2.

- (c) Define the concepts of Hamiltonian graph and an Eulerian graph. Give an example of graph that is Hamiltonian but not Eulerian.
- 4. (a) A survey among 1000 people, 595 are democrats, 595 wear glasses, 550 like ice-cream, 395 of them are democrats who wear glasses, 350 of them are democrats who like ice-cream. 400 of them wear glasses and like ice-cream and 250 all the three.
 - (i) How many of them are not Democrats, do not wear glasses and do not like ice-cream?
 - (ii) How many of them are democrats who do not wear glasses and do not like ice-cream?
 - (b) Let Z denote the set of integers and the Relation R on Z be defined by "aRb", iff a-b is an even integer. Then show that R is an equivalence relation.
 - (c) Define each of the following with an 5 example.
 - (i) Fuzzy Set
 - (ii) Union of two Fuzzy Set
 - (iii) Intersection of two Fuzzy Set.

5. (a) Find for each whether it is lattice or not? If not, why?

(b) Every Chain is a distributive lattice. Prove it.

3

4

3

2

- (c) Use k-map to simplify the following $A^1B^1CD + A^1B^1CD^1 + AB^1C^1D^1 + AB^1CD^1$
- (d) Draw the logic network diagram for the expression AB+CD.
- (e) Draw Harse diagram for the partial ordering $\{(A, B) \mid A \subseteq B\}$ on the power set P(S) where $S = \{a, b, c\}$.