No. of Printed Pages: 4

CS-01

5

6

5

02600

PGDCA / MCA (I Year) / BCA

Term-End Examination December, 2010

CS-01: COMPUTER FUNDAMENTALS

Time: 3 hours

Maximum Marks: 75

Note: Question no. 1 is compulsory. Answer any three questions from the rest.

- 1. (a) Make the truth table for the following expressions and design the digital logic circuit for the same.
 - (i) f(x,y,z) = x'y + z' + xyz
 - (ii) f(x,y,z) = x'(y'+z)
 - (b) Write a program in 8086 assembly language to multiply two single digit positive numbers by repeated addition method. (for example, to multiply 6x3, the program evaluated the product by adding 6 three times)
 - (c) Explain the use of segmentation in 8086 microprocessor. What are the various segments in 8086 microprocessor? Illustrate the generation of physical address in 8086 microprocessor.

- (d) What in Cache Coherence ? Why is it important for shared memory multiprocessor systems ?
- (e) Represent the following floating point 4 numbers using 32 bits IEEE 754 floating point representation.

5

8

5

- (i) 22.25 (ii) 0.825
- (f) What is the importance of RISC machines.
 Explain the basic features of RISC architecture.
- 2. (a) 4-bit odd parity checker calculates the number of bits in the given 4 bits of data. If the number of bits are odd in the given number it generates output "1". For example,

Input = 1011, output = 1
Input = 0011, output = 0
Using this logic, design a 4 - bit parity

checker with the help of K-maps. Draw the resultant logic circuit.

- (b) How the Effective Address (EA) is calculated in the following addressing schemes? Using suitable example of each.
 - (i) Register Indirect Addressing
 - (ii) Displacement addressing using Base Register.
- (c) Subtract 27 from 68 using 2's 2 Complement.

- Write a program in 8086 assembly language 6 3. (a) to search for a number in a list of numbers. Explain the differences between a branch 4, (b) instruction, a call instruction and an interrupt, using an example for each. What is set-associative mapping scheme for 3 (c) cache memory. 3 How can a J-K flip flop be constructed? (a) 4. Draw its logic diagram and characteristic table. Explain the following Mnemonics of 8086 12 (b) Instruction set with an example of each. (i) SHL **ROR** (ii) **TEST** (iii) **CBW** (iv) **NEG** (v) POP (vi)
 - 5. (a) Give at least three differences between loosely coupled microprocessors and Tightly coupled microprocessors.

3

3

- (b) Explain the following with the help of an 12 example/diagram if needed
 - (i) Vector Processing
 - (ii) Multi port memory
 - (iii) Vertical Micro instruction
 - (iv) Flags register
 - (v) Interleaved memory
 - (vi) Instruction Pipeline

4