No. of Printed Pages: 4

CSI-32

ADIT/BIT PROGRAMME

00765

Term-End Examination December, 2010

CSI-32: DISCRETE MATHEMATICS

Time: 3 hours

Maximum Marks: 75

Note: All questions from Section - A are compulsory. Attempt any three questions from Section - B.

SECTION-A

- 1. State True/False for each of the following 10 statements and also give reason for your answer:
 - (a) $P(S) \cap P(P(S)) = \{\phi\}$ for any set S, where P(S) denotes the power set of a given set S.
 - (b) If R is symmetric and transitive then R is Reflexive and Hence R is an equivalence relation.
 - (c) $(\overline{A \cap B}) = \overline{A} \cap \overline{B}$
 - (d) $P(A \setminus B) = P(A) P(A \cap B)$
 - (e) If f(x) = 3x 7 then $f^{-1}(x) = \frac{x 7}{3}$.

- 2. (a) Establish the equivalence 5
 - $P \to (Q \to R) \equiv (P \land Q) \to R.$
 - (b) Obtain the principal conjunctive normal 5 form of $(p \land q) \lor (\neg p \land r)$.
- 3. (a) Express $P \leftrightarrow Q$ using \uparrow and \downarrow only. 4
 - (b) Prove that equality on any set is an equivalence relation.
 - (c) Let f(x) = 2x + 1 and g(x) = 3x. Find fog and gof?

SECTION - B

Attempt any three questions from this section.

- 4. (a) Find all the partitions of $S = \{p, q, r, s\}$.
 - (b) A relation R is defined on the set I, the set of integers, by the rule : 'aRb if and only if ab > 0' for a, $b \in I$. Examine if R is reflexive, symmetric and transitive?
 - (c) Draw Venn Diagram for (A∪B)⊆B and 5 B⊂A.
- 5. (a) If R is a transitive relation on a set A, then show that R^{-1} is also transitive on A.
 - (b) Let A = {a, b}

 R = {(a, a), (b, a), (b, b)} and

 S = {(a, b), (b, a), (b, b)} be relations on A.

 Then prove that (SoR)⁻¹ = R⁻¹oS⁻¹.
 - (c) Show that the two functions $g, f: R \rightarrow R$ 4 such that

$$f(x) = 2x + 7 \text{ and}$$

$$g(x) = (x-7)/2$$

are inverses of each other.

6

- 6. (a) If the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$, 6 find $f^{-1}(4)$ and $f^{-1}(-4)$?
 - (b) Show that $(p \lor \neg q) \land (\neg p \lor \neg q) \lor q$ is 5 tautology.
 - (c) Establish the logical equivalence 4 $\sim (p \rightarrow q) \equiv p \land \sim q$.
- 7. (a) Draw Hasse diagram of (d(12), divides). 5
 - (b) Prove that for any set A, B $A (A B) = A \cap B$.
 - (c) Show that (6 5 4 3 1 2) is an even 4 permutation while (6 7 5 1 2 3) is odd permutation.