BACHELOR IN COMPUTER APPLICATIONS

10017

Term-End Examination

December, 2010

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 hours

Maximum Marks: 75

Note: Question number 1 is **compulsory**. Attempt **any three** questions from the rest. In total, you have to answer **four** questions. Use of Calculator is permitted.

- 1. (a) (i) The approximations to the number $\frac{2}{3}$ 1+4 are given as 0.6, 0.66, and 0.67. Which of these is the best approximation and why?
 - (ii) Find to how many significant digits is the value $\frac{355}{113}$, an accurate approximation to $\pi = 3.14159265...$
 - (b) If $x = 0.178693 \times 10^1$, $y = 0.178439 \times 10^1$ are accurate to six significant digits, then find the number of significant digits in z = x y.

(c) Prove the following relations:

5

5

(i)
$$\Delta \left(\frac{f_i}{g_i}\right) = \frac{g_i \Delta f_i - f_i \Delta g_i}{g_i g_{i+1}}$$

(ii)
$$\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$$
.

(d) Solve the following equations by Gauss - Seidal iteration method:

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

Start with the approximation $x_0 = y_0 = z_0 = 0$.

(e) Find the Lagrange interpolating polynomial that fits the following data:

x	-2	1	0	2	
f(x)	3	-3	1		
AT					

Also compute the approximate value of f(1.5).

- (f) Compute the cube root of 24 by using 5 Newton Raphson method.
- 2. (a) Solve the following equations by Jacobi's method: 3x5=15

$$5x + 2y + z = 12$$

$$x + 4y + 2z = 15$$

$$x + 2y + 5z = 20.$$

- (b) Find the real root of the equation $3x = \cos x + 1$ by Newton Raphson method.
- (c) Using Newton's interpolation formula, find the value of f(1.6) if

x:	1	1.4	1.8	2.2
f(x):	3.49	4.82	5.96	6.5
<u> </u>				

3. (a) Solve the following equations by Gauss Elimination method: 3x5=15

$$2x_1 + 4x_2 + x_3 = 3$$
$$3x_1 + 2x_2 - 2x_3 = -2$$

$$x_1 - x_2 + x_3 = 6$$

- (b) If $p = \frac{5xy^3}{z^3}$ and error in x,y,z is 0.001, compute the relative maximum error in p when x = y = z = 1.
 - (c) Find a real root of the equation $x^3 2x 5 = 0$

by the Regula - Falsi method correct to three decimal places.

4. (a) Using Runge - Kutta method of order four, find y (0.2) given that 3x5=15

$$\frac{dy}{dx} = 3x + \frac{y}{2},$$

 $y(0) = 1$, taking $h = 0.1$

- (b) A root of the equation $xe^x 1 = 0$ lies in the interval (0.5, 1.0). Determine this root correct to three decimal places using regula falsi method.
- (c) Evaluate $\int_{0}^{2} \frac{dx}{x^{2} + 2x + 10}$ Using the Simpson's $\frac{1}{3}$ rule with $h = \frac{1}{4}$.
- 5. (a) Find a real root of the equation $x^4 x 10 = 0$ Using the bisection method correct to three decimal places.
 - (b) Using Newton Raphson method obtain a root of the equation
 x³ 5x + 1 = 0
 correct to three decimal places.
 Assume x₀ = 0.0

(c) For the data

x	0	0.2	0.4	0.6	0.8	1.0
f(x)	7.0	6.008	5.064	4.216	3.512	3.0

Find an approximation to f (0.1) and f (0.3) by using Newton's Forward difference formula.