02087

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

December, 2010

CS-64: INTRODUCTION TO COMPUTER ORGANISATION

Maximum Marks: 75 Time: 3 hours Question Number 1 is compulsory. Attempt any three questions from the rest. Simplify the following Boolean function 1. (a) 6 using SOP form using K - Map. $f(A, B, C, D) = \Sigma(1, 4, 5, 10, 12, 14)$ What are decoders? Depict the logic (b) 5 diagram and truth table of a 3×8 decoder. What are Micro Operations? Explain the (c) 5 four types of micro operations in digital computers. (d) Explain the process of machine start up 4 using a suitable diagram. 5 Write a program in 8086 assembly language (e) to copy five elements byte array to another location in the data segment. Make suitable assumptions, if any.

(f) Define the following terms: 5 (i) Linker (ii) COM programs (iii) Interleaved memory system Clock cycle (iv) (v) Flag register 2. Write a program in assembly language to (a) 5 convert an ASCII number to its hexadecimal equivalent. (b) What is Master-Slave flip flop? Discuss its 6 working and show how the race around condition is eliminated in this flip flop. (c) Perform the following binary arithmetic 4 operations using 2's complement notation. $(64)_{10} + (95)_{10}$ (i) (ii) $(95)_{10} - (64)_{10}$ (iii) $(-14)_{10} \times (-2)_{10}$ 3. Differentiate between the following: 15 Ripple and Ring counter (a) (b) Programming and Microprogramming JK flip flop and S-R flip-flop (c) (d) RAM and ROM (e) Full Adder and Half Adder

4.	(a)	What will be the result of execution of the	6
		following 8086 assembly language	
		instructions	
		AL = 01010101	
		BL= 10101010	
		(i) CMP AL, BL	
		(ii) ADD AL, BL AAA	
		(iii) ROR BL, 04	
	(b)	What are Interrupts and why are they	5
		important? Explain the different types of	
		interrupts. Write the steps of an Interrupt	
		Service Routine.	
	(c)	What are Optical Memories? Explain their	4
		layout and block format.	
5.	(a)	Explain the Bus Interconnection structure.	6
		Explain the following terms w.r.t. the bus.	
		(i) Dedicated or Multiplexed Buses	
		(ii) Daisy chaining	
		(iii) Polling	
	(b)	What is Cache Memory? Explain its	7
		organisation and utility. Explain the set	
		associative mapping scheme of cache with	
		the help of a suitable diagram.	
	(c)	The various registers for 8086	2
		microprocessor have values as	
		SP=0011 _h	
		SS=1000 _h	
		Find the physical address of the top of the	
		stack.	