No. of Printed Pages: 3

CS-73

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hours

Maximum Marks: 75

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1.	(a)	Give the regular expression for the strings	
		$\{a^2, a^5, a^8,\}.$	2
	(b)	List three applications of Finite Automata.	3
	(c)	Briefly describe a Non-Deterministic Turing Machine.	5
•	(d)	Tabulate Chomsky hierarchy of grammar with an example for each.	5
	(e)	Construct FA for the language	
		$L(m) = \{aa, bb, aabb, aaaabbbb,\}.$	5
	(f)	Using parse tree, verify whether the following grammar is ambiguous or unambiguous :	
		$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$	5
	(g)	Show that if L and M are regular languages, then $L \cap M$ is also regular.	5
cs	-73	1 P.T	.0.

2. (a) Derive the equivalent FA from the following NFA :

5

5

5

5

5

(b) Convert the following regular expression into a FA :

(aa)* a (bb)*

- (c) Give regular expression for all strings that do not end with ab.
- 3. (a) Show that the language $L = \{ a^n b^n a^n : n \ge 0 \}$ is not regular. 5
 - (b) Design a Turing Machine which multiplies the given binary input value by 2. 5
 - (c) Explain in brief Universal Turing Machine. 5
- 4. (a) Construct a PDA to accept $L = \{ww^{R} \mid w \in (0 + 1)^{*}\},$ where w^{R} is reversed w.
 - (b) Show that the language $L = \{a^{n^2}b^n : n \ge 0\}$ is not context free.

CS-73

(c) Show that the predecessor function pred : $N \rightarrow N$ defined as pred (n) = $\begin{cases} 0 & \text{if } n=0\\ n-1 & \text{if } n \ge 1\\ & \text{is primitive recursive.} \end{cases}$

5. (a)

(c)

Show that the state entry problem is undecidable.

(b) If $f(x) = 2x^3 + 3x^2 + 1$ then show that

 $\mathbf{f}(\mathbf{x}) = \mathbf{O}(\mathbf{x}^4)$

and also

 $\mathbf{f}(\mathbf{x}) \neq \mathbf{O} \ (\mathbf{x}^2).$

(i) NP-Complete problem

(ii) NP-Hard problem

5

4

6

5