No. of Printed Pages : 5

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

02853 June, 2015

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks: 75

Note: Question number 1 is compulsory. Attempt any three from questions number 2 to 5. Scientific calculator is permitted.

1.	(a)	(i)	Round the following numbers to two decimal places :			
			48.21416, 2.3742, 52.275, 2.375,			
			2·385, 81·255			
		(ii)	Round-off the following numbers to four significant figures :			
			38·46235, 0·70029, 0·0022218,			
			19.235101, 2.36425			
	(b)	Let $x = 0.345 \times 10^{0}$, $y = 0.245 \times 10^{-3}$ and				
		z = arit	$z = 0.432 \times 10^{-3}$. Using 3-digit decimal arithmetic with rounding find whether			

CS-71

5

5

1

(a + b) + c = a + (b + c), or not.

- (c) Find a real root of the equation by using Bisection method $x^3 - x - 1 = 0$.
- (d) Use the method of iteration to find a positive root between 0 and 1 of the equation $x e^{x} = 1$.
- (e) Use the Newton-Raphson method to find a root of the equation $x^3 2x 5 = 0$.
- (f) For each of the following numbers, find the number of significant digits and express it in scientific notation :
 - (i) 0.00682
 - (ii) 1.072
 - (iii) 300·2
 - (iv) 400.0
 - (v) 1070
- 2. (a) Using Runge-Kutta fourth order method, find the value of y(0.1) and y(0.2) correct to four decimal places.

Given
$$\frac{dy}{dx} = y - x$$
,
where $y(0) = 2$.

(b) Use Newton-Raphson method to obtain a root of the equation x² - 5x + 6 = 0 lying between 1.0 and 2.5, correct to three decimal places.

2

5

 $\mathbf{5}$

5

5

5

(c) The population of a town in the decennial census was as given below. Estimate the population for the year 1895.

Year : x	1891	1901	1911	1921	1931
Population : y (in thousands)	46	66	81	93	101

3. (a) The function $y = \sin x$ is tabulated below :

x	. 0	π/4	π/2	
$y = \sin x$	0	0.70711	1.000	

Using Lagrange's interpolation formula, find the value of $\sin(\pi/6)$.

(b) Using the following table, find f(x) as a polynomial in x by using Newton's interpolation formula. Hence compute f(6.5).

·x	- 1	0	3	6	7
f(x)	3	- 6	39	822	1611

- (c) Prove the following where the operators have their usual meaning :
 - (i) $\Delta \equiv \mathbf{E} \nabla$
 - (ii) $\mathbf{E} \equiv \mathbf{1} + \Delta$

P.T.O.

5

5

5

5

- **4.** (a)
- Find the missing term in the following table by using interpolation method :

x	0	1	2	3	4
У	1	3	9	?	81

(b) Solve the following equations by Cramer's rule :

$$3x + y + 2z = 3$$

 $2x - 3y - z = -3$
 $x + 2y + z = 4$

(c) Solve the following equations by Jacobi Iteration:

 $5x_1 + x_2 + 2x_3 = 19$ $x_1 + 4x_2 - 2x_3 = -2$ $2x_1 + 3x_2 + 8x_3 = 39$

5. (a) Solve the following equations by Gauss-Seidel method :

$$3x_1 + 2x_2 + x_3 = 7$$

 $x_1 + 3x_2 + 2x_3 = 4$
 $2x_1 + x_2 + 3x_3 = 7$

(b) Find by the method of Regula-Falsi a real root of the equation

$$x^3 + x^2 - 3x - 3 = 0$$

lying between 1 and 2.

CS-71

4

5

5

5

5

(c)

Solve by Euler's method, the equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x + y.$$

Given y(0) = 0.

Choose h = 0.2 and compute y(0.4) and y(0.6).