BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED)

Term-End Examination

December, 2022

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 Hours Maximum Marks: 100

Note: (i) Any calculator is allowed during examination.

- (ii) Question No. 1 is compulsory. Attempt any three more from the next four questions.
- 1. (a) Solve the following system of equations using Gauss Elimination method: 6

$$2x_1 + 8x_2 + 2x_3 = 14$$
$$x_1 + 6x_2 - x_3 = 13$$
$$2x_1 - x_2 + 2x_3 = 5$$

(b) Solve the following system of equations by using Gauss-Seidel iteration method (perform two iterations):

$$8x - 3y + 2z = 20$$
$$6x + 3y + 12z = 35$$
$$4x + 11y - z = 33$$

- (c) Determine the value of $\sqrt{12}$ by Newton-Raphson method (perform 3 iterations), taking $x_0 = 3.5$, as initial estimate.
- (d) Verify the relation $(1 + \Delta)(1 \nabla) = 1$, where Δ and ∇ are forward and backward differencing operators, respectively.
- (e) Write Bessel's formula of numerical differentiation. Briefly discuss its application with suitable example. 6
- (f) Using the Lagrange's interpolation method, find the interpolating polynomial that fits the data given below: 5

x_k	f_k
0	2
1	3
2	12
5	147

(g) Write Simpson's $\frac{1}{3}$ rule and use it to compute the integral of the function f(x), the respective values of x and f(x) are tabulated below:

x	f(x)
0	1
0.1	1.01
0.2	1.04
0.3	1.09
0.4	1.16
0.5	1.25
0.6	1.36
0.7	1.49
0.8	1.64
0.9	1.81
1.0	2.0

- (a) Briefly discuss the terms accuracy, precision and significant digits with suitable example of each.
 - (b) Write formula for Gauss-Jacobi iterative method. Solve the following system of

6

equations using Gauss-Jacobi method (perform three iterations): 7

$$-4x_1 + x_2 + 10x_3 = 21$$
$$5x_1 - x_2 + x_3 = 14$$
$$2x_1 + 8x_2 - x_3 = -7$$

[4]

- (c) Write formula for the Secant method. Use it to perform three iterations for finding roots of the equation $x^3 + 4x^2 10 = 0$ near x = 0 and x = 1 (compute upto two decimal places only).
- 3. (a) Verify the following:

(i)
$$\Delta^3 f(x) = 0$$
, when $f(x) = x^2$

(ii)
$$E^n f(x) = e^{x+nh}$$
, where $f(x) = x^2$

(x varies with constant increment of h)

(b) Find the Newton's forward difference interpolating polynomial which agrees with the following data:

x	f(x)
1	10
2	19
3	40
4	79
5	142
6	235

Also, obtain the values of f(x) at x = 1.5.

(c) Find the Lagrange's interpolating polynomial for the following data: 7

- •	
x	f(x)
$\frac{1}{4}$	-1
$\frac{1}{3}$	2
1	7

4. (a) If $f(x) = \frac{1}{x}$, show that:

$$f(a,b,c) = \frac{+1}{abc}$$

using divided difference table for $x = \{a, b, c\}.$

(b) Evaluate the integral $I = \int_0^1 \frac{dx}{\sqrt{1+x^2}}$ by

Trapezoidal rule, divide the interval [0, 1] into 5 equal parts (compute upto 5 decimal places only).

(c) Use Euler's method to find the solution of the IVP given below: 10

$$y' = -2ty^2$$
, $y(0) = 1$

take the interval [0, 1] with step size h = 0.2.

- 5. (a) Using Runge-Kutta method of order 4, approximate y, when x = 0.1 and x = 0.2, given that x = 0 when y = 1 and $\frac{dy}{dx} = x + y$. (Take h = 0.1).
 - (b) Differentiate between the following: 10
 - (i) Euler's method and modified/improved Euler's method
 - (ii) Runge-Kutta method (order 2) and Runge-Kutta method (order 4)

Give advantage and disadvantage of each.