No. of Printed Pages : 4

MCH-004

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

June, 2024

MCH-004 : ELECTROANALYTICAL AND OTHER METHODS

Time : 3 Hours Maximum Marks : 75

- **Note :** Answer and **five** questions. All questions carry **equal** marks.
- (a) Describe the calomel electrode. Why is this Preferred over hydrogen electrode.
 - (b) What are the advantages of cyclic voltammetry over linear voltametry ?
 - (c) A cell is set up as follows :

Zn/Zn²⁺ ($a = 5 \times 10^{-3}$)//Cu²⁺ ($a = 2 \times 10^{-2}$)/Cu given :

 $E^{\circ} Cu^{2+}/Cu = 0.337 V$, $Zn^{2+}/Zn = -0.763 V$ calculate cell potential. 5 + 5 + 5

P.T.O.

[2] MCH-004

- 2. (a) Write the Ilkovic equation and define each term. 5+5+5
 - (b) Describe the procedure for the determination of Zn with EDTA amperometrically.
 - (c) Draw a labelled polarogram indicating the following :
 - (i) Residual current
 - (ii) Diffusion current
 - (iii) Limiting current
 - (iv) Half wave potential.
- 3. (a) A 9.6 ampere current is passed through a solution of $AgNO_3$ for 50 mm. Calculate the amount of Ag deposited at the Cathod. (Atomic wt of Ag is 108). 5 + 5 + 5
 - (b) Describe an electrochemical cell. Write by the reactions taking place at each electrode taking a suitable examples.
 - (c) What are electrolytes ? How are these classified ? Write one example of each.
- 4. (a) Explain the boundary potential of the glass electrode when it is placed in a test solution. How does it affected the pH ?
 - (b) Explain the metal-metal ion interface during the development of electrode potential with a suitable illustration. 5 + 5 + 5

[3]

MCH-004

- (c) (i) Derive an expression for the determination of equilibrium constants from electrode potential mesurement.
 - (ii) Calculate the solubility product of AgCl from the data given below : $E^{o}Ag+/Ag = + 0.799V$ $E^{o}AgCl/Ag = + 0.212 V$
- 5. (a) List the factors which causes error in pH measurements. 5 + 5 + 5
 - (b) Why does accuracy increase in pH titrations compared to that of direct pH measurement ?
 - (c) How can a glass electrode be made selective for ions other than hydrogen ions ? Give examples.
- 6. (a) Explain the terms conductance, specific conductance, equivalent conductivity and molar conductivity.
 5 + 5 + 5
 - (b) The resistance of 0.01 M solution of an electrolyte was found to be 210Ω at 25° C. Cell Constant = 0.88 cm⁻¹. Calculate the molar conductance of the solution at 25° C in Sm² md⁻¹ unit.
 - (c) Explain the significance of half wave potential in polarography.
- 7. (a) Which of the following is better and why?

5 + 5 + 5 **P.T.O.** [4] MCH-004

- (i) Linear sweep voltammetry and cyclic voltammetry.
- (ii) Anodic stripping voltammetry and adsorptive stripping voltametry.
- (b) Briefly describe the technique of differential thermal analysis (DTA). What kind of information is obtained by this analysis ?
- (c) A mixture of CaO and CaCO₃ is analysed by TGA, the result indicates that mass of the sample decreases from 250.6 mg to 190.8 mg only between 600°C to 900°C. Calculate the percentage of CaCO₃ in mixture (Mr of CaCO₂ 100.1, CaO = 561 and CO₂ = 44).
- 8. Write short notes on any *three* of the following :

5 × 3

- (a) Radio Tracer technique.
- (b) Neutron Activation Analysis (NAA)
- (c) Solid state membrane electrodes
- (d) Limiting molar conductivity.
- (e) Geiger muller counter.
