MCH-003

No. of Printed Pages: 6

POST GRADUATE DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

June, 2024

MCH-003: SPECTROSCOPIC METHODS

Time: 3 Hours Maximum Marks: 75

Note: Answer any **five** questions out fo **8** given. All questions carry equal marks.

Answer any Five of the following:

- 1. (a) Define non-radiative relaxation and radiative relaxation.
 - (b) What are monochromators? Name the two types of monochromators.
 - (c) Write the structure of phenolphthalein. Is it fluorescent? Explain 3
 - (d) Name any **three** factors affecting applications of fluorimetry.

P.T.O.

[2] MCH-003

- (e) Name the most prefered gas used as plasma gas. Write any **two** reasons for its preference.
- (f) Which compound is used as standard for chemical shifts in 'H NMR spectroscopy?
- 2. (a) Explain the terms reflection, refraction and diffraction with diagramatic representation. 5
 - (b) How charge transfer complex is formed?Draw a schematic diagram showing MO of donor, acceptor and charge transfer complex species.
 - (c) State Lambert Beer's law. 5(1+4) Molar absorptivity of a compound is 5.0×10^4 cm⁻¹ mol⁻¹ dm⁻³. Calculate the transmittance in or cuvette of path length 1.0 cm containing 4.0×10^{-6} mol dm⁻³ solution of the compound.
- 3. (a) Name three regions of infrared radiations.

 What are the two types of infrared spectrometers. Write the advantages of one over the other.

(b)	Explain the theory of Raman spectroscopy
	with the help of schematic representation of
	energy changes. Calculate the wave number
	(in cm ⁻¹) of wavelength 500 nm.
(c)	Draw a neat labelled Joblonski diagram
	showing the origin of phosphorescence and
	fluorescence. 5
(a)	How is fluorescence in a molecule related with
	its structure? Explain with suitable examples.
	Which one of pyridine and biphenyl be
	fluorescent ? 5
(b)	Name the essential components of an
	instrument used to measure fluorescence.
	Draw a schematic layout of a fluorimeter. 5
(c)	Briefly describe all the factors adversely
	affecting quantitative application of
	fluorimetry. 5
(a)	Discuss fluorimetric determination of blood

glucose with all the chemical equations. Can

it be used for the determination of fructose or

5

4.

5.

sucrose?

131

MCH-003

(b)	In what respect molecular spectrum differs
	from that of atomic spectrum? Explain three
	characteristics of molecular spectrum with
	suitable illustration. Which one of these
	characteristics is related with the concentration?

5

- (c) Name any **one** fuel-oxidant mixture used in flame photometry. Write the approximate temperature obtained. Draw the structure of flame.
- 6. (a) Discuss the merits and the limitations of flame photometry methods. 5
 - (b) Draw a schematic diagram of hollow cathode lamp (HCL) illustrating different components.In what respects electrodeless discharge lamp (EDL) is an improvement over HCl?
 - (c) Draw a typical calibration plot used in flame photometry. What happens at higher concentrations? How these could be avoided by using low concentration range?

ſ	5]	MCH-003
ı	J	MCH-003

- (a) Name all the components of atomic absorption spectrophotometer (AAS). Draw a schematic diagram of AAS. Write any one fuel-oxidant combination commonly used in AAS.
 - (b) Describe the three types of interferences in AAS explaining how these could be avoided.

5

- (c) Write the principle of atomic emission spectrometry (AES). Draw a schematic diagram of ICP torch showing all inlets. 5
- 8. (a) Define chemical shift. Why is it called so ? How are its units in δ and τ seales related ?

5

- (b) Define Index of Hydrogen Deficiency (1HD) calculate 1HD of C₄H₁₀O and predict if it contains unsaturation or ring structure.
- (c) An organic molecule having moleculer formula C_3H_6O shows the following spectral characteristics:

P.T.O.

[6] MCH-003

IR: Strong absorption band at 1700 cm⁻¹

NMR : Single peak at $\delta = 2.2$

Mass spectrum: At m/z 15, 43, 58.

Interpret the spectra and identify the compound.
