No. of Printed Pages : 5 **MST–018**

M. SC. (APPLIED STATISTICS) (MSCAST)

Term-End Examination

June, 2024

MST-018 : MULTIVARIATE ANALYSIS

Time : 3 Hours Maximum Marks : 50

Note **:** (i) *Question No. 1 is compulsory.*

- *(ii) Attempt any four questions from the remaining question nos. 2 to 6.*
- *(iii) Use of scientific calculator (nonprogrammable) is allowed.*

(iv) Symbols have their usual meanings.

- 1. State whether the following statements are True *or* False. Give reasons in support of your answers : $5 \times 2 = 10$
	- (a) The variance-covariance matrix of a random vector $\frac{X}{a}$ is symmetric.

P. T. O.

- (b) If \overline{X} is a *p*-variate normal vector and $a_{p\times 1}$ and $b_{p\times 1}$ are scalar vectors, then the linear combination $(a+b)$ [']X['] is a bivariate normal vector.
- (c) The determinant of the matrix $\left(\begin{matrix} 1/2 & 0 & 0\ 0 & 1/4 & 0\ 0 & 0 & 1/6 \end{matrix}\right) \mathrm{i}$ 0 1/4 0 0 0 1/6 is 48.
- (d) The first principal component is the normalized linear combination of random variables with minimum variance.
- (e) Cluster analysis is a method of grouping a set of objects together, so that objects in the same group are not all similar.
- 2. (a) Let $X = \begin{bmatrix} 1 & 0 \\ 0 & x \end{bmatrix}$ 2 $X = \begin{pmatrix} X \\ X \end{pmatrix}$ $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ has the following joint density function : 5

$$
f(x_1, x_2) = \begin{cases} 9x_1^2x_2^2, & 0 < x_1 < 1, 0 < x_2 < 1\\ 0, & \text{otherwise} \end{cases}
$$

Find the mean vector and variancecovariance matrix of $\frac{X}{x}$. Also, comment on the independence of X_1 and X_2 .

(b) Let $X_{P\times 1} \sim N_P$ $X \sim N_P(\mu, \Sigma)$ \times μ, Σ). $\sim P \times 1$. If $A_{P \times P}$ and $B_{P \times P}$ are two matrices of constant elements then obtain the variance of AX and prove, that

 $A X = B X$ are independent if $A\Sigma B' = 0$, where 0 is the null matrix. 5

3. Let $P \times 1$ $X \sim N_{\rm p}(\mu, \Sigma)$ \times $X_{P\times 1} \sim N_P(\mu, \Sigma).$. Also, $\sum_{n=1}^{\infty}$, μ \sim and Σ be partitioned as :

$$
\underset{\sim}{X}_{P\times 1}=\left(\underset{\sim}{\tilde{X}}\underset{(P\times K)\times 1}{X^{(1)}}\right),\ \underset{\sim}{\mu}_{P\times 1}=\left(\underset{\sim}{\overset{\mu^{(1)}}{\underset{K\times 1}{\tilde{X}\times 1}}}\right)
$$

and

$$
\Sigma_{P \times P} = \begin{pmatrix} \Sigma_{11_{K \times K}} & \Sigma_{12_{K \times (P-K)}} \\ \Sigma_{21_{(P-K) \times K}} & \Sigma_{22_{(P-K) \times (P-K)}} \end{pmatrix}
$$

Then obtain the conditional distribution of $X^{(2)}$ given $\underline{X}^{(1)} = \underline{x}^{(1)}$.

Also, if
$$
X = \begin{pmatrix} X^{(1)} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \sim N_4(\mu, \Sigma)
$$
, where $\mu = \begin{pmatrix} -4 \\ \frac{1}{4} \\ 0 \end{pmatrix}$

and $2 0 |1 0$ $0 2 | 2 0$ 1261 $\Sigma = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 2 & 0 \\ \hline 1 & 2 & 6 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$, , then obtain the conditional

distribution of $\underline{X}^{(2)}$ given $\underline{X}^{(1)} = x^{(1)}$. 10

P. T. O.

$$
\Sigma = \begin{pmatrix} 5 & 0 & 2 & 0 \\ 0 & 4 & 0 & -1 \\ 2 & 0 & 3 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix}
$$
, then prove that the sub-
vectors $\begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$ and $\begin{pmatrix} X_2 \\ X_4 \end{pmatrix}$ are independent. 5

(b) Define Wishart matrix. Prove that if $A \sim w(n, P, \Sigma)$, then

$$
Z_{q \times q} = \text{CAC'} \sim w(n, q, \text{C2C'}),
$$

where C is a $q \times p$ matrix of rank $q(\leq p)$. 5

5. If :

$$
A = \begin{pmatrix} 6 & 2 & 0 \\ 2 & 4 & -2 \\ 0 & -2 & 6 \end{pmatrix},
$$

then :

- (i) obtain the square root matrix corresponding to a matrix A and verify that $A^{1/2}A^{1/2} = A$.
- (ii) determine the first principal component of A and the proportion of the total variability that it explains. $5+5$

6. (a) If :

$$
\underline{X}_{\alpha}^{(1)}, (\alpha = 1, 2, ..., N_1) \sim N_P(\mu^{(1)}, \Sigma)
$$

and

$$
X_{\sim \alpha}^{(2)}, (\alpha = 1, 2, ..., N_2) \sim N_P(\mu^{(2)}, \Sigma)
$$

are two independent random samples, where Σ is the common dispersion matrix and it is unknown, then describe the procedure for testing the hypothesis : $\frac{5}{5}$

$$
H_0: \mu^{(1)} = \mu^{(2)}
$$

(b) Define Mahalanobis D^2 and Hotelling's T^2 . Also, state the relationship between the two. 5