No. of Printed Pages : 6

MST-015

M. Sc. (APPLIED STATISTICS)

(MSCAST)

Term-End Examination

June, 2024

MST-015 : INTRODUCTION TO R SOFTWARE

 $Time: 2 \ Hours$

Maximum Marks : 25

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any **two** questions out of the remaining question nos. 2 to 4.
- (iii) Use of scientific calculator (non-programmable) is allowed.
 (iv) Symbols have their usual meanings.
- 1. Answer the following : $5 \times 1=5$
 - (a) What is the full form of CRAN ?
 - (b) Is there any difference between the usage of '?' and '??' operators for help ?
 - (c) Write the output of the following statement:

$$\operatorname{rep}(x=2:4, \operatorname{each}=4)$$

- (d) Which of the following user defined function names are inappropriate and why?
 - (i) **mean**
 - (ii) exp
- (e) Write an assignment statement equivalent to the following equation in R :

$$\mathbf{E} = \frac{mc^2}{\sqrt{1 - \frac{\mathbf{V}^2}{c^2}}}$$

2. (a) Write step-by-step execution of the following code :

sum $\leftarrow 0$ for (i in c (6, 9)){

for (j in c (1, 4)){

sum \leftarrow sum + choose (i, j) * x [i, j]}

(b) The following funds were disbursed during 2010 to 2014 by a leading financial institution :

Year	Amount (₹ in lakh)	
2010	1,400	
2011	1,500	
2012	1,900	
2013	2,200	
2014	3,000	

Write R commands to create a pie chart of the data and to add colors, main title, labels name and percentages to the created pie chart.

- (c) Use mapply() function to generate 3, 6, and 9 uniform numbers in the range 0 to 1 in a single command.
- 3. (a) Write step-by-step execution of the following code :

```
y \leftarrow 5

p \leftarrow 1

if (y \ge 0){

while (y \ge 0){

P \leftarrow P * y ; print (P)

y \leftarrow y - 1; print (y)}

} else {

while (y < 0)}

p \leftarrow p / y; print (P)

y \leftarrow y + 1; print (y)}

}

print (P)
```

- (b) Write the general syntax of for and while loops in R. Also, explain their executions with the help of some examples.
- (c) Create a function that computes the geometric mean and harmonic mean of the following type of data : 4+3+3

Observation	Frequency	
x_1	f_1	
x_2	f_2	
x_3	f_3	
x_4	f_4	
x_5	f_5	
x_6	f_6	

4. (a) Create two matrices A and B with the following elements :

$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 2 & 2 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Write R commands to do the following task :

(i) Multiply the two matrices.

- (ii) Obtain the determinant of the matrix A.
- (iii) Obtain a vector of the elements of the principle diagonal of A.
- (iv) Create a function named **comb**, which combines these two matrices rowwise and columnwise. Also print the output.
- (b) Write R commands to create a .txt file with name \downarrow stack .txt consisting of the following data :

Air.	Water.	Acid.	Stack.
Flow	Temp.	Conc.	loss
81	27	90	43
81	25	89	38
76	23	91	38
63	22	88	29
63	24	94	19

Read the data and assigned it to Stack Loss. Then write R commands to :

- (i) Col1, Col2, Col3 and Col4.
- (ii) Compute the row means and column sums of the data frame.

- (iii) Sort Stack Loss data according to the Col2 of it.
- (c) Find the error in the following code : hist (x, col = lightblue, breaks = 10, title = Histogram of x, axes = TRUE, labels = TRUE)

Also, rewrite the corrected code. 4+4+2

MST-015