No. of Printed Pages: 7

M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

[M. Sc. (MACS)]

Term-End Examination June, 2024

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time: 2 Hours Maximum Marks: 50

Weightage: 50%

Note: (i) Question No. 7 is compulsory.

- (ii) Attempt any four questions from Question Nos. 1 to 6.
- (iii) Use of non-programmable scientific calculator is allowed.
- 1. (a) Determine the following:

4

- (i) $A \cup B$
- (ii) $A \cap B$
- (iii) Complement of set A and B
- (iv) Universe of discourse of set A and B

Where, A and B are the fuzzy sets, given below:

$$A = \left\{ \frac{RAM}{0.5}, \frac{SHYAM}{0.9}, \frac{JOHN}{0.7}, \right.$$

$$\left. \frac{ARIF}{0.1}, \frac{JEET}{0.8} \right\}$$

$$B = \left\{ \frac{RAM}{0.75}, \frac{SHYAM}{0.4}, \frac{JOHN}{0.3}, \right.$$

$$\left. \frac{ARIF}{0.6}, \frac{JEET}{0.7} \right\}$$

(b) Consider the travelling salesman problem, given below:

Parent 1	Parent 2		
A	Е		
В	G		
C	I		
D	D		
E	C		
F	В		
G	J		
Н	Н		
I	A		
J	F		

where, A, B, C, D, E, F, G, H, I are ten cities under consideration.

Find the children solution using order crossover (#1), assuming 4th and 8th sites as crossover and cyclic crossover with 4th position as initial position.

- (c) Write at least four chromosomes sets, which are identified by schema S = (10 * 0 *).
- 2. Write back propagation algorithm. Given the weighted structure and initial input as follows:

10

(i) Weighted structure:

$$[W]^0 = \begin{bmatrix} -0.25 \\ -0.40 \end{bmatrix}, \text{ bias } \phi_{(0)}^{(1)} = \begin{bmatrix} -0.50 \\ -0.1 \end{bmatrix}$$

$$[V]^0 = [0.1 - 0.2], \text{ bias } \phi_{(0)}^{(2)} = [0.5]$$

(ii) Initial input = 1

Approximate the function $f(x) = 1 + \cos \pi x$ for $-1 \le x \le 1$, by solving 1-2-1 network, using back propagation algorithm.

3. (a) Explain Hopfield networks. Consider a Hopfield network with Weight matrix (W) as follows:

$$W = \frac{1}{3} \begin{bmatrix} 0 & -2 & 2 \\ -2 & 0 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$

and two test input vectors $P_1 = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$; $P_2 = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}$ Verify that the output state vectors

Verify that the output state vectors satisfies the alignment condition. 6

- (b) List and justify, which of the genetic operator (Viz. selection, crossover and mutation) on their combination, will be required for the following:
 - (i) To fill the population with copies of the best individual from the population.
 - (ii) To cause the algorithms to converge on a good but sub-optimal solution.
- 4. (a) Verify whether the Genetic Algorithm (GA) improves the solution from one generation to the next generation, for the maximization of function f(x) given below:

$$f(x) = \sqrt{x}; 1 \le x \le 16$$

Assume that chromosomes of length 6 are created at random and modified by Roulette-Wheel selection.

- (b) Determine the length and order of the following schema:
 - (i) $S_1 = *1*01*$
 - (ii) $S_2 = ***0****$
 - (iii) $S_3 = *00*1**$
 - (iv) $S_4 = 1**00*1**$
- 5. Write Fuzzy C-Mean (FCM) Algorithm. Use FCM to find the new cluster center (perform only one iteration). The relevant data is given below:
 - (a) Dataset for feature f_1 and f_2 is as follows:

Point	x_1	x_2	x_3	x_4	x_5	x_6
f_1	2	4	7	11	12	14
f_2	12	9	13	5	7	4

(b) Initial cluster centers are V_1 = (6, 6) and V_2 = (11, 11).

- (c) The number of clusters are two and value of parameter which influences membership grade (*m*) is 2.
- 6. (a) What are Kohonen neural networks?

 Given the relevant data below, for a

 Kohonen network, find the output of the
 neurons in the network.
 - (i) Input to Neuron-1 (I_1) = 0.5 Input to Neuron-2 (I_2) = 0.75
 - (ii) Connected weights between Neurons are:

 $I_1 \rightarrow O_1: 0.1$

 $I_2 \rightarrow O_1: 0.2$

 $I_1 \rightarrow O_2 : 0.3$ and

 $I_2 \rightarrow O_2: 0.4$

(b) Determine the α-cut of the Fuzzy set (A) as given below, at 0.7 and 0.2:

$$A = \left\{ \frac{0}{10}, \frac{0}{20}, \frac{0.2}{30}, \frac{0.8}{40}, \frac{1.0}{50}, \frac{1.0}{60} \right\}$$

$$\left.\frac{0.6}{70}, \frac{0.2}{80}, \frac{0}{90}, \frac{0}{100}\right\}$$

Compare the α -cut of two outcomes and give comments for the status of α -value variation.

7. State whether the following statements are True or False. Give reasons for your answers:

 $2 \times 5 = 10$

- (a) If $w(k_0) = w(k_0 + 1) = w(k_0 + 2)$, then perceptron is non-linearly separable.
- (b) Only linearly separable data can be classified by multilayer perceptron.
- (c) If $\alpha_1 > \alpha_2$ then subset relation is $A\alpha_1 \,\supseteq\, A\alpha_2.$
- (d) The length of chromosomes to determine the maximum value of the set (S)

$$S = \{x \mid 0 \le x \le 4096\} \text{ is } 12.$$

(e) Self-organizing system is a special class of artificial neural network based on competitive learning.