No. of Printed Pages : 5

MMTE-005

MASTER'S DEGREE PROGRAMME (MDP) Term-End Examination June, 2024 MMTE-005 : CODING THEORY

Note : (*i*) *There are six questions in this paper.*

- (ii) Question No. 6 is compulsory.
- (iii) Do any **four** questions from question nos. **2** to **5**.
- (iv) Use of calculator is not allowed.
- 1. (a) Check whether the [4, 2]-code : 3 $C = \{ (\bar{0}, \bar{0}, \bar{0}, \bar{0}, \bar{0}, \bar{0}) (\bar{1}, \bar{1}, \bar{1}, \bar{0}, \bar{0}, \bar{0}) (\bar{0}, \bar{0}, \bar{0}, \bar{1}, \bar{1}, \bar{1}) \\ (\bar{1}, \bar{1}, \bar{1}, \bar{1}, \bar{1}, \bar{1}) \}$

over \mathbf{F}_2 is perfect.

(b) Define a primitive element of a finite field. Check whether 5 is primitive element for the field F₁₃.

P. T. O.

- (c) Let **C** be a [7, 4] binary cyclic code with generator polynomial $x^3 + x^2 + 1$. Find a generator matrix and a parity check matrix of the code. 4
- 2. (a) Define an [n, k]-linear code over a finite field \mathbf{F}_a . Check whether the code : 2

$$\mathbf{C} = \left\{ \left(\bar{0}, \bar{0}, \bar{0}\right), \left(\bar{1}, \bar{1}, \bar{0}\right), \left(\bar{1}, \bar{0}, \bar{0}\right), \left(\bar{1}, \bar{1}, \bar{1}\right) \right\}$$

over \mathbf{F}_2 is linear.

(b) What is a repetition code ? What is the generator matrix of the repetition code over \mathbf{F}_2 in which a message of length 3 is repeated twice ? If, in a repetition code in which a message of length three is sent thrice, the codeword 100 110 100 is received, decode the message assuming there is at most one error. 3

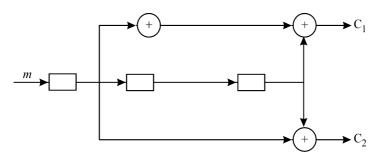
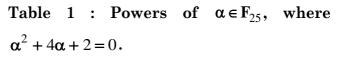



Figure 1 : Encoder for convolution code.

[3]
---	---	---

MMTE-005

i	α^i	i	α^i
1	α	13	4α
2	α + 3	14	$4\alpha + 2$
3	$4\alpha + 3$	15	$\alpha + 2$
4	$2\alpha + 2$	16	$3\alpha + 3$
5	$4\alpha + 1$	17	$\alpha + 4$
6	2	18	3
7	2α	19	3α
8	$2\alpha + 1$	20	$3\alpha + 4$
9	$3\alpha + 1$	21	$2\alpha + 4$
10	$4\alpha + 4$	22	$\alpha + 1$
11	$3\alpha + 2$	23	$2\alpha + 3$
12	4	24	1

P. T. O.

(c) Define a cyclic code. Check whether the code {110, 011, 101} is cyclic. 2

(d) Find the gcd of
$$x^4 + x^3 + x + 2$$
 and
 $x^4 + 2x^3 + 2x + 2$ in $\mathbf{F}_3[x]$. 3

3. (a) Show that the Z_4 -linear codes with generator matrices : 5

$$G_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 2 & 2 \end{bmatrix} \text{ and } G_2 = \begin{bmatrix} 3 & 3 & 1 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 0 & 2 \end{bmatrix}.$$

are monomically equivalent.

- (b) Find the convolutional code for the message 11011. The convolutional encoder is given in figure 1.
- 4. (a) Construct a [12, 8] BCH code over \mathbf{F}_5 with designed distance 3. Use $x^2 + 4x + 2 \in \mathbf{F}_5[x]$ as the primitive polynomial and Table 1. 7
 - (b) If a polynomial generator matrix of an [n, k] convolutional code C is basic and reduced, then prove that it is canonical. 3

[4]

5. (a) Find the weight distribution of the binary code generated by : 5

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

Find the weight enumerator polyomial of the code. Also, find the weight enumerator polynomial of the dual code.

(b) The systematic generator matrix for a [5, 2] linear code is : 5

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Find the standard array for syndrome decoding.

- 6. Which of the following statements are true and which are false ? Justify your answer with short proof or a counter-example : $5 \times 2=10$
 - (a) $2 + x + x^2 + x^3$ is irreducible in $\mathbf{F}_3[x]$.
 - (b) If $GG^t = 0$ for the generator matrix G of a linear code, G is self dual.
 - (c) A quadratic residue code of length 7 exists over \mathbf{F}_3 .
 - (d) The parity check code of a turbo code can be the identity matrix.
 - (e) Every perfect code is a self dual code.

MMTE-005