No. of Printed Pages: 4

MMT-006

M.Sc. MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE

[M.Sc. (MACS)]

Term-End Examination

June, 2024

MMT-006: FUNCTIONAL ANALYSIS

Time: 2 Hours

Maximum Marks: 50

Note: Questions number 6 is compulsory.

Attempt any four of the remaining questions.

1. (a) Suppose $\{e_n\}$ is an orthonormal basis for a Hilbert space H and f is a bounded linear functional on H. Show that $f(x) = \langle x, y \rangle$ for all $x \in H$, where $y = \sum \overline{f(e_n)} e_n$ and $\|f\|^2 = \sum |f(e_n)|^2$.

P.T.O.

[2] MMT-006

- (b) Prove that a normed space X is complete if there is a complete subspace M such that X/M is complete.
- (c) Find a sequence (A_n) of bounded operators on l^2 such that $||A_n|| = 1$ for all n and $\lim_{n \to \infty} A_n x = 0$ for all $x \in l^2$.
- 2. (a) State the principle of uniform boundedness. Use it to prove that a sequence (A_n) of bounded operators on a Hilbert space H is bounded if $\{\langle A_n x, y \rangle\}$ is a bounded sequence for all $x, y \in H$.
 - (b) Let $M = \{x \in l^4 : x_{2n-1} = 0 \text{ for all } n\}$. Show that l^4 and M are homeomorphic. 4
 - (c) Find an orthonormal basis for span $\{(1, 0, 1), (0, 1, 1)\}$ in \mathbb{R}^3 .
- 3. (a) Let X be a real normed linear space and let x_0 be a non-zero vector in X. Using Hahn-Banach theorem show that \mathbf{J} a linear functional f_0 on X. Such that

$$f_0(x_0) = ||x_0|| \text{ and } ||f_0|| = 1.$$

- [3]
- b) Let u, v be non-zero vectors in a Hilbert space H and $Ax = \langle x, n \rangle v + \langle x, v \rangle u$ for $x \in H$. If $u \perp v$, show that A is a bounded linear operator with ||A|| = ||u|| ||v||. Compute A^* .
- 4. (a) Find a normed space X and x, $y \in x$. Such that ||x|| = ||y|| = 1 and ||x + y|| = 2. 2
 - (b) On [0, 1] show that $Af(x) = \int_0^x f(t)dt$ defines a bounded linear map. Also, calculate ||A||.
 - (c) If A is a selfadjoint operator on a Hilbert space prove that $\sum \frac{(iA)^n}{n!}$ converges in norm.
- 5. (a) If $\|.\|_1$, $\|.\|_2$ are norms on a vector space X, show that $\|x\| = \max(\|x\|_1, \|x\|_2)$ defines a norm.
 - (b) Prove that a non-zero linear functional f on a normed space is continuous if and only if $Z(f_0)$ is not dense.

[4]

MMT-006

- (c) Let M be a linear subspace of a normed space X and $i: M \to X$ be the inclusion map i(y) = y. Calculate i^* , the conjugate map of i.
- 6. State, with justification, whether the following statements are True or False: $5 \times 2 = 10$
 - (a) If A is a bounded operator and $\sigma(A) = \{0\}$, then A = 0.
 - (b) In l^2 , $\{e_n : n = 1, 2,\}^1 = (0)$.
 - (c) $f \to f(0)$ is a bounded linear functional on $(C[-1, 1], ||.||_1)$.
 - (d) If M is a proper subspace of a normed space X, then X, M is dense in X.
 - (e) Let $\{x_n\}$ be a sequence in a normed linear space X. If $||x_m|| \to ||x||$ for some $x \in X$, then $x_m \to x$.
