No. of Printed Pages : 4

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE [M.Sc. (MACS)]

Term-End Examination

June, 2024

MMT-004 : REAL ANALYSIS

Time : 2 Hours

Maximum Marks : 50

MMT-004

- Note: Question no. 1 is compulsory. Attempt any four questions from question no. 2 to 6. Calculators are not allowed. Notations as in the study material.
- 1. State whether the following statements are true or false. Justify your answers. $5 \times 2 = 10$
 - (a) The restriction of a continuous map defined on a metric space to any subset of the space is continuous.
 - (b) A finite subset of a metric space is totally bounded.

P.T.O.

[2] MMT-004

- (c) A connected subspace in a metric space which in not properly contained in any other connected subspace is always open.
- (d) The surface given by the equation x + y + z sin(xyz) = 0 can also be described by an equation of the form z = f(x, y) in a neighbourhood of the point (0, 0).
- (e) A real valued function f on [a, b] is continuous if it is integrable on [a, b].
- 2. (a) Find the interior, closure, the set of limit points and the boundary of the set

A = { $(x, y) \in \mathbf{R}^2 : y = 1$ }

in \mathbf{R}^2 with the standard metric. 3

(b) Consider $f: \mathbf{R}^3 \to \mathbf{R}^3$ given by 4

f(x, y, z) = (2x + 3y + z, xy, yz + xz)Find f (2, 0, -1).

(c) Define the outer measure *m** of a subset A of **R**.Find the outer measure of

A = { $x \in \mathbf{R} : x^2 = 1$ } \cup [-3, 2]

3. (a) State Cantor's intersection theorem. Does the theorem hold for the metric space X = (0, 1] with the standard metric ? Justifiy your answer.

[3] MMT-004

(b) Obtain the second Taylor's series expansion for the function given by $f(x, y) = xy^2 + 5xe^y$

at
$$\left(1,\frac{\pi}{2}\right)$$
.

(c) Define the Lebesgue integral of a simple measurable function. Find the integral of the function f given by

$$f = \chi_{[0, 1]} + 2\chi_{[3, 5]} + \chi_{[6, 9]}.$$

- 4. (a) Show that the continuous image of a compact metric space in compact. Is f[0, 1] compact in **R** where $f(x) = e^x$.
 - (b) Check whether the function $f : \mathbf{R}^4 \to \mathbf{R}^4$ given by $f(x, y, z, w) = (x, x - y, y^2 z, zw)$ is locally invertible at the point (1, -2, 1, 0). 3
 - (c) State Fatou's Lemma. Using this Lemma prove the dominated convergence theorem.
- 5. (a) Show that the projection map $p : \mathbb{R}^2 \to \mathbb{R}$ given by p(x, y) = y is uniformly continuous. 3
 - (b) Find and classify the extreme values of (x, y) = xy 4

Subject to the constraint

$$\frac{x^2}{8} + \frac{y^2}{2} - 1 = 0.$$

[4] MMT-004

(c) Prove that the Fourier series for $f(t) = t^2$ on [$-\pi, \pi$] is

$$\frac{\pi^2}{3} + 4 \sum_{x \in N} \frac{(-1)^n \cos nt}{n^2}$$
 3

- 6. (a) What are the components of \mathbf{R} under : 2
 - (i) Standard metric on **R**.
 - (ii) Discrete metric on **R**.
 - (b) Define a stable system. Check whether the system

R : S
$$\rightarrow$$
 S given by

$$g(t) = (\mathbf{R}f)(t) = \int_{-\infty}^{t} f(\tau)e^{-(t-\tau)d\tau}$$

is stable a not, where S denotes the set of signals. 3

(c) For $f, g \in L'(\mathbb{R})$ define the convolution map f^*g .

Show that if either f or g is bounded, then the convolution f^*g exists for all x in **R** and is bounded in **R**.
