[2] MMT-002

Find the matrix of T relative to the bases

 $\{(1, 1), (1, -1)\}$ of \mathbb{R}^2 and $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ of \mathbb{R}^3 .

(b) Find the spectral decomposition of : 3

-1	1	-1]
1	1	1
1	1	1

2. Solve the system of differential equations :

$$\frac{dy(t)}{dt} = Ay(t)$$

where
$$A = \begin{bmatrix} 0 & 4 \\ -1 & 4 \end{bmatrix}$$
, $y(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. 5

3. Find the singular value decomposition of :

 $A = \begin{bmatrix} 2 & -3 & 0 \\ -3 & -2 & 2 \end{bmatrix}$

Also, find its Moore-Penrose inverse.

4. (a) If
$$A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
 determine the behaviour of A^i
is $i \to \infty$.

No. of Printed Pages : 3

MASTER IN MATHEMATICS WITH APPLICATIONS TO COMPUTER SCIENCE

Term-End Examination

June, 2024

MMT-002 : LINEAR ALGEBRA

Time : 1½ Hours M

Maximum Marks : 25

MMT-002

- *Note* : (i) There are **five** questions in this paper.
 - (ii) The fifth question is compulsory.
 - (iii) Do any *three* questions from Q. 1 toQ. 4.
 - (iv) Use of calculators is *not* allowed.
- 1. (a) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by :

$$T(x, y) = (x + y, x - y, -y)$$

P.T.O.

(b) Find the QR decomposition of :

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$
 3

- 5. Which of the following statements are true and which are false ? Justify your answer with a short proof or a counter example, whichever is appropriate. 10
 - (i) If two matrices have the same characteristic polynomial and the same minimal polynomial they are similar.
 - (ii) Every positive definite matrix is invertible.
 - (iii) QR decomposition of any matrix is unique.
 - (iv) If $A \in M_n(\mathbb{C})$ A and A^* commute, then A is unitarily diagonalisable.
 - (v) If $A \in M_n(\mathbb{R})$, A = N + D, where N is a nilpotent matrix and D is a diagonal matrix, then ND = DN.

[3]