No. of Printed Pages : 11

MTE-12

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

June, 2024

MTE-12 : LINEAR PROGRAMMING

Time : 2 Hours

Maximum Marks : 50

Note: (i) Question No. 1 is compulsory.

(*ii*) Answer any **four** questions from question nos. **2** to **7**.

(iii) Use of calculator is not allowed.

 Which of the following statements are True and which are False ? Give a short proof or a counter-example in support of your answers :

5×2=10

 (i) Every two-person zero-sum game can be represented by a pair of primal-dual LPPs.

- (ii) The steps followed in solving a transportation problem are the same as that used in the simplex method.
- (iii) The primal problem most always be the maximization type.
- (iv) The addition of a new constraint improves the value of objective functions.
- (v) Every basis solution in the assignment problem is always degenerate.
- 2. (a) A company pays skilled and unskilled workers on the basis of ₹ 40 and ₹ 30 per hour respectively. The company requires at least 90 workers in the production unit. Also at least twice as many unskilled workers must be employed as skilled workers. Formulate this as linear programming problem. 5
 - (b) Obtain the dual of the following LPP : 5 Maximize :

$$z = 5x_1 + 7x_2$$

subject to the constraints :

$$\begin{array}{l} 2x_{1} + 4x_{2} \leq 6 \\ 3x_{1} + 2x_{2} \leq 1 \\ x_{2} \geq 4 \\ x_{1}, x_{2} \leq 0 \end{array}$$

3. (a) Write the LPP formulation of the following assignment problem : 5

			Machines				
			M_1	${\rm M}_2$	${ m M}_3$		
		J_1	18	16	12		
	Jobs	J_2	10	7	10		
		\mathbf{J}_3	14	8	18		
(b)	Solve the	e followii	'_ ng game :	graphica	lly: 5		
			Playe	er B			
		Γ	3	7			
	Pla	ayer A	5	2			
			1	4			

4. (a) Write the LPP formulation of the following transportation problem : 5

	De	Supply			
	D_1	D_2	D_3	Suppry	
	O_1	10	18	12	200
Source	O_2	15	17	9	300
	O_3	13	15	7	500
Requirement		400	200	400	

 $\mathbf{5}$

(b) Use the principle of dominance to reduce the following game and hence solve the game: 5

	Player B					
	5	0	-10			
Player A	10	6	2			
	20	15	10			

5. (a) Solve the following assignment problem for profit maximization : 5

	А	В	С	D
Ι	14	18	11	26
II	17	23	20	27
III	28	31	26	30
IV	23	30	25	28

$$\mathbf{S} = \left\{ (x, y) : x^2 + y^2 \ge 1 \right\}$$

is not convex.

6. (a) Write the LPP formulation of the following two person zero-sum game : 5

Player B

 $\begin{array}{c|c} A_1 \\ Player A \\ A_2 \\ A_3 \end{array}$ B_1 B_2 B_3 B_4 711 18 $\mathbf{5}$ 9 6 1210 1213129

 $\mathbf{5}$

(b) Obtain the basis solution to the following linear system : 5

$$2x_1 + x_2 + x_3 = 3$$
$$x_1 + 2x_2 + x_3 = 6$$

7. (a) Solve the following LPP graphically :

Maximize :

$$z = 10x_1 + 10x_2$$

subject to the constraints :

$$\begin{array}{l} 4x_1 + 3x_2 \leq 12 \\ \\ 6x_1 + 18x_2 \leq 36 \\ \\ x_1, x_2 \geq 0 \,. \end{array}$$

(b) Find all values of k for which the vectors : 5

$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \text{ and } \begin{bmatrix} 2\\-k\\2k \end{bmatrix}$$

are linearly independent.

स्नातक उपाधि कार्यक्रम (बी. डी. पी.) सत्रांत परीक्षा जून, 2024 एम.टी.ई.-12 : रैखिक प्रोग्रामन समय : 2 घण्टे अधिकतम अंक : 50 नोट : (i) प्रश्न सं. 1 अनिवार्य है। (ii) प्रश्न सं. 2 से 7 तक कोई चार प्रश्न कीजिए।

> (iii) कैल्कुलेटरों का प्रयोग करने की अनुमति नहीं है।

- निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं ? अपने उत्तर के पक्ष में एक संक्षिप्त उपपत्ति **या** प्रति-उदाहरण दीजिए : 5×2=10
 (i) प्रत्येक शुन्य-योग द्वि-व्यक्ति खेल एक आद्य-द्वैती
 - LPPs द्वारा निरूपित किया जा सकता है।

- (क)एक कम्पनी निपुण और अनिपुण कर्मचारियों को क्रमश: ₹ 40 और ₹ 30 के अनुसार भुगतान करती है। कम्पनी की निर्माण इकाई को कम से कम 90 कर्मचारियों की आवश्यकता है। अनिपुण कर्मचारियों के दोगुने निपुण कर्मचारी कम से कम आवश्यक हैं। इस समस्या को LPP समस्या में सूचित कीजिए। 5
- (v) एक नियतन समस्या में प्रत्येक आधारी हल हमेशा
 अपभ्रष्ट होता है।

2.

- (iv) एक प्रतिबंध को जोड़ने से उद्दश्य फलन के मान में सधार होता है।
- (iii) आद्य समस्या हमेशा अधिकतमीकरण की होनी चाहिए।
- (ii) एक परिवहन समस्या को हल करने के लिए प्रयोग
 किए चरण एकधा विधि में प्रयोग किये जाने वाले
 चरणों के समान हैं।

$$\begin{array}{l} 2x_1 + 4x_2 \leq 6 \\ 3x_1 + 2x_2 \leq 1 \\ x_2 \geq 4 \\ x_1, x_2 \leq 0 \,. \end{array}$$

 (क)निम्नलिखित नियतन समस्या की LPP सूचित कीजिए : 5

			मशीन			
		I	M_1	${\rm M}_2$	М	· 3
	J_1		18	16	12	2
जॉब	\mathbf{J}_2	-	10	7	1	0
	J_3	-	14	8	1	8
(ख)निम्नलिखित	खेल	⊢ का	ग्राफीय	विधि	से	्र हल
कोजिए :						5
		f	खलाड़ी ।	В		

			गंतव्य	पूर्ति	
		D_1	D_2	D_3	ζ.,
	O_1	10	18	12	200
स्रोत	O_2	15	17	9	300
	O_3	13	15	7	500
आवश	आवश्यकता		200	400	

(ख) प्रमुखता नियम का प्रयोग करके निम्नलिखित खेल
 का आकार समानीत कीजिए। इस प्रकार खेल को
 हल कीजिए : 5

खिलाड़ी B

	5	0	-10
खिलाड़ी A	10	6	2
	20	15	10

P. T. O.

 (क)लाभ अधिकतमीकरण की निम्नलिखित नियतन समस्या को हल कीजिए : 5

	А	В	С	D
Ι	14	18	11	26
II	17	23	20	27
III	28	31	26	30
IV	23	30	25	28

(ख)दर्शाइए कि समुच्चय

$$S = \left\{ (x, y) : x^2 + y^2 \ge 1 \right\}$$

अवमुख नहीं है।

6. (क)निम्नलिखित शून्य योग द्वि-व्यक्ति खेल का LPP

सूत्रीकरण लिखिए :

		खिलाड़ी B				
		B_1	B_2	B_3	B_4	
	A_1	7	11	18	5	
खिलाड़ी A	\mathbf{A}_2	9	12	6	10	
	A_3	12	13	12	9	

[10]

5

(ख)निम्नलिखित रैखिक निकाय के सभी आधारी हल ज्ञात कीजिए : 5 $2x_1 + x_2 + x_3 = 3$ $x_1 + 2x_2 + x_3 = 6$ 7. (क)निम्नलिखित LPP को ग्राफीय विधि से हल कीजिए : 5 $z = 10x_1 + 10x_2$ का अधिकतमीकरण कोजिए। जबकि : $4x_1 + 3x_2 \le 12$ $6x_1 + 18x_2 \le 36$ $x_1, x_2 \ge 0$. (ख)k के वे मान ज्ञात कीजिए जिनके लिए सदिश $\begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{vmatrix}$ और $\begin{bmatrix} 2 \\ -k \\ 2k \end{bmatrix}$ रैखिक स्वतंत्र है। 5

MTE-12

[11]