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BACHELOR’S DEGREE PROGRAMME 

(BDP)  

Term-End Examination 

June, 2024 

MTE-09 : REAL ANALYSIS 

 Time : 2 Hours    Maximum Marks : 50 

Note : Attempt five questions in all. Q. No. 7 is 

compulsory. Answer any four questions from 

Question Nos. 1 to 6. Use of calculators is not 

allowed. 

1. (a) Prove or disprove : 2 

“The set of integers is a countable set.” 

(b) Test the convergence of the following  

series :  4 
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(c) Examine the function :f R R  defined  

by :   4 

22 3
, when 0

4( )
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3

x x
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for continuity on R. If it is not continuous 

at point in R, find the nature of 

discontinuity there at.  

2. (a) Examine the series given below for 

convergence : 2 

1

2 5

3 2

n

n

n

n





 
  

   

(b) Find the value of kR  for which : 3 

3

( 1)(2 3)(3 2)
lim

3x

x x x

x kx

  

 
  

exists. Also find the limit. 

(c) Find the upper and the lower Riemann 

integrals of the function f, defined on [a, b] 

as follows : 5 

1, when isrational
( )

2, when isirrational

x
f x

x


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

. 

Is f Riemann integrable on [a, b] ? Justify 

your answer.  
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3. (a) Show that the equation : 3 

3 22 3 2 15 0x x x     

has a root in the interval [–3, –2]. 

(b)  Prove that 8 3n n  is divisible by 5, for all 

nN  using principle of induction. 3 

(c) Examine the function   3 2( ) ( 2) (1 )f x x x  

for extreme values. 4  

4. (a) Check whether the following sets are 

closed : 2 

(i) The set 
1

: n
n

 
 

 
N   

(ii) The set of rational numbers Q. 

(b) Show that on the curve, 24 7 2,y x x    

the chord joining the points whose abscisae 

are x = 2 and x = 3, is parallel to the 

tangent at the point whose abscissa is 

5
.

2
x    4  

(c) Show that the sequence { }nf  of functions, 

where 
2

( ) ,
3

n

n
f x

x n



 is uniformly 

convergent in [0, 2]. 4 

5. (a) Using the sequential definition of 

continuity prove that the function 

:f R R , defined by ( ) 3 5,f x x x   R  

is continuous.  2 
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(b) Use Cauchy’s root rest to examine the 

convergence or divergence of the series : 4 
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(c) Let : [0,1]f R  be a function defined by 

2( ) 1 .f x x   Let 1
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 and 

2
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  be two partitions of the 

interval, [0, 1]. Calculate U ( 1P ,  f) and  

L 2(P , )f . 4  

6. (a) Define a Cauchy sequence. Show that the 

following sequence ( )na  is Cauchy, where 

the following : 3 

1 1 1 1
1 ...... .

1! 2! 3! !
na

n
       

(b) What are the sufficient conditions for a set 

to have a limit point ? Check whether the 

following sets have any limit points. 3 

(i) The set of even numbers between 10 

and 10,000. 

(ii) ]–2, 5[ 
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(c) Let : , [0,2]
2 2

f
  

  
 

 be a function 

defined by ( ) 1 sin .f x x   Check whether 

f–1 is a invertible or not. If so, show that 

1f   is a continuous function using inverse 

function theorem.  4  

7. Which of the following statements are true and 

which are false ? Give proper reasons for your 

answers :  5×2=10 

(i) –1 is a limit point of the interval ]–2, 1[. 

(ii) Product of two discontinuous functions can 

never be continuous. 

(iii) The series : 

1 1 1
1 ......

2 4 6
      

is divergent. 

(iv) The function, 2( ) 3f x x   is not 

differentiable in [1, 3]. 

(v) The necessary condition for a function f to 

be integebrable is that it is continuous.  
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:f R R R

R
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3 22 3 2 15 0x x x     

[–3, –2]

8 3n n nN

  3 2( ) ( 2) (1 )f x x x

(i)  
1

: n
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N

(ii)  Q

24 7 2,y x x  

x = 2 x = 3 
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f(x) = 3x – 5

:f R R
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[0,1] ,f R 2( ) 1f x x 
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[0, 1] 1U(P , )f

2L(P , )f

( )na
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 (i)

 (ii) ]–2, 5[ 

: , [0,2]
2 2

f
  

  
 

 

( ) 1 sinf x x 

f

1f 

5×2=10 

(i) –1 ] –2, 1[

(ii) 

(iii) 
1 1 1

1 ......
2 4 6

      

(iv) 2( ) 3f x x  , [1, 3]

(v) f

f
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