No. of Printed Pages : 9

MTE-01

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

June, 2024

MTE-01 : CALCULUS

Time : 2 Hours

Maximum Marks : 50

Note : (*i*) *Question No.* **1** *is compulsory.*

(ii) Attempt any four questions from Question Nos. 2 to 7.

(iii) Use of calculator is not allowed.

State whether the following statements are 1. true or false. Justify your answers with a short proof or a counter-example : 10

(i)
$$\frac{d}{dx} \left[\int_{2}^{e^{-x}} \ln t \, dt \right] = xe^{-x} - \ln 2.$$

(ii) If the functions *f* and *g* are defined on **R** by f(x) = 3(2 - x) and g(x) = 2|1-x|, then $(g \circ f)(5) = 10.$

P. T. O.

(iii) The curve
$$y = \frac{3-4x}{2+3x^2}$$
 has an asymptote parallel to the axis of *x*.

- (iv) If p is a critical point of the function f, then f is derivable at the point p.
- (v) The function *f* defined by f(x) = |3-x| is differentiable in the interval [0, 2].

2. (a) Let
$$f : \mathbf{R} - \{2\} \to \mathbf{R}$$
 be a function defined by

$$f(x) = \frac{3x^2 - 5x - 2}{x - 2}.$$
 Find a $\delta > 0$ such that
 $|f(x) - 7| < \frac{1}{12}$ for $0 < |x - 2| < \delta$. Hence, find
 $\lim_{x \to 2} f(x).$ 4

(b) Connect $I_n = \int_{\pi/4}^{\pi/2} \csc^n x \, dx$ (n > 1) with I_{n-2} . Hence, deduce the value of I_4 . 6

$$\int \frac{dx}{(x-3)^2(x^2+4)}$$

(b) Differentiate $\cos^{-1} x$ w.r.t. $\tan^{-1} \sqrt{\frac{1-x}{1+x}}$. 3

(c) A river is 70 m wide. Its depth 'd' (in m) at a distance x m from one of its banks is given by the following table :

x	d
0	0
10	3
20	6
30	8
40	11
50	13
60	10
70	2

Find the area of the cross-section by the Trapezoidal rule. 3

- 4. Trace the curve $y^2 = x^2(x+4)$ by stating all the properties used to trace it. 10
- 5. (a) Find the maximum possible domain of the function *f* defined by : 2

$$f(x) = \sqrt{\frac{4-x}{2x}}$$

(b) By considering the function f given by f (x) = (x - 3) ln x in [1, 3], show that the equation x (1 + ln x) = 3 is satisfied by at least one value of x lying in]1, 3[.

P. T. O.

- [4]
- (c) Find the approximate value of $(0.998)^{7/2}$ taking the first three terms of Maclaurin's series for $(1-x)^{7/2}$. 5
- 6. (a) Evaluate :

$$\lim_{x \to 1} \frac{x^{1/2} - 1}{x^{1/5} - 1}$$

- (b) Find the upper and the lower integrals for the function f, defined by f(x) = |3x-2| in the interval [2, 4]. Hence conclude, whether f is integrable over [2, 4] or not. 4
- (c) Find the volume of the solid generated by revolving the curve $y(x^2+4) = 8$, about its asymptote. 4
- 7. (a) Check whether $f(x) = e^{-2x}$ is always decreasing or not. 2
 - (b) The cost of fuel in running an engine is proportional to the square of the speed in km/h and it is ₹ 75 per hour when the speed is 15 km/h. Other costs amount to ₹ 300 per hour. Find the speed, which will minimize the cost.
 - (c) Find all the points of discontinuity of the function *f* given by :

$$f(x) = \begin{cases} 2-x; & x \le 2\\ x-2; & 2 < x \le 3\\ 2x-3; & x > 3 \end{cases}$$

also draw its graph.

 $\mathbf{2}$

MTE-01

स्नातक उपाधि कार्यक्रम (बी. डी. पी.)

सत्रांत परीक्षा

जून, 2024

एम.टी.ई.-01 : कलन

समय : 2 घण्टे

अधिकतम अंक : 50

नोट : (i) प्र. सं. 1 करना अनिवार्य है।

- (ii) प्रश्न संख्या 2 से 7 तक कोई **चार** प्रश्न कीजिए।
- (iii) कैलकुलेटर का प्रयोग करने की अनुमति नहीं है।
- निम्नलिखित में से कौन-से कथन सत्य और कौन-से असत्य हैं ? अपने उत्तर के पक्ष में संक्षिप्त उपपत्ति या प्रति-उदाहरण दीजिए : 10
 - (i) $\frac{d}{dx} \left[\int_{2}^{e^{-x}} \ln t \, dt \right] = xe^{-x} \ln 2$
 - (ii) यदि फलन f और g, **R** पर f(x) = 3(2 x) और g(x) = 2|1 - x|, द्वारा परिभाषित हैं, तो $(g \circ f)(5) = 10$ |

P. T. O.

(iii) वक्र
$$y = \frac{3-4x}{2+3x^2}$$
 की एक अनंतस्पर्शी *x*-अक्ष के
समानांतर है।

(v)
$$f(x) = |3 - x|$$
 द्वारा परिभाषित फलन f अंतराल
[0, 2] पर अवकलनीय है।

2. (क)मान लीजिए कि
$$f: \mathbf{R} - \{2\} \to \mathbf{R}$$
 एक फलन है
जो $f(x) = \frac{3x^2 - 5x - 2}{x - 2}$ द्वारा परिभाषित है। एक
ऐसा $\delta > 0$ ज्ञात कीजिए कि $0 < |x - 2| < \delta$ के
लिए $|f(x) - 7| < \frac{1}{12}$ है। $\lim_{x \to 2} f(x)$ ज्ञात कीजिए।
4

(ख)
$$I_n = \int_{\pi/4}^{\pi/2} \operatorname{cosec}^n x \, dx \ (n > 1)$$
 का I_{n-2} के साथ
संबंध स्थापित कीजिए। इस प्रकार I_n का मान
निकालिए। 6

3. (क)
$$\int \frac{dx}{(x-3)^2(x^2+4)}$$
 ज्ञात कोजिए। 4

$$(ख)\cos^{-1} x$$
 का $\tan^{-1} \sqrt{\frac{1-x}{1+x}}$ के सापेक्ष अवकलन
कीजिए। 3

(ग) एक नदी 20 मी. चौड़ी है। इसके एक किनारे से
 x मी. दूर पर इसकी गहराई 'd' (मी. में)
 निम्नलिखित तालिका में दी गयी है:

x	d
0	0
10	3
20	6
30	8
40	11
50	13
60	10
70	2
समलंब नियम द्वारा अन्	नुच्छेद का क्षेत्रफल ज्ञात

कीजिए।

 4. वक्र $y^2 = x^2(x+4)$ का अनुरेखण कीजिए और

 अनुरेखण में प्रयोग किये जाने वाले गुणधर्मों को

 लिखिए।
 10

5. (क)
$$f(x) = \sqrt{\frac{4-x}{2x}}$$
 द्वारा परिभाषित फलन f का
अधिकतम संभावित प्रांत ज्ञात कीजिए। 2

P. T. O.

3

(ख) $f(x) = (x - 3) \ln x$ द्वारा अंतराल [1, 3] में परिभाषित फलन लीजिए। दर्शाइए कि समीकरण x $(1 + \ln x) = 3$, अंतराल]1, 3[में स्थित कम से कम एक मान x के लिए संतुष्ट होती है। 3 (ग) $(1-x)^{7/2}$ के लिए मैक्लारिन श्रेणी के तीन पहले पदों का प्रयोग करके $(0.998)^{7/2}$ का सन्निकट मान ज्ञात कीजिए। 5

6.
$$(\pi) \lim_{x \to 1} \frac{x^{1/2} - 1}{x^{1/5} - 1} = \pi$$
 को जिए। 2
 $(\ensuremath{\mathbf{w}}) f(x) = |3x - 2|$ द्वारा अंतराल [2, 4] में परिभाषित
फलन f के लिए उपरि और निम्न समाकलन ज्ञात
की जिए। इस प्रकार निष्कर्ष निकालिए कि f, [2, 4]
पर समाकलनीय है या नहीं। 4
 (π) वक्र $y(x^2 + 4) = 8$ को इसकी अनंतस्पर्शी के

7. (क) जाँच कीजिए कि $f(x) = e^{-2x}$ हमेशा ह्रासमान है या नहीं। 2 (ख)एक इंजन को चलाने में लगे ईंधन की लागत इसकी चाल के वर्ग के समानुपाती है और यह लागत ₹ 75 प्रति घंटा है जबकि चाल 15 km/h है। अन्य लागत ₹ 300 प्रति घंटा है। वह चाल ज्ञात कीजिए। जबकि लागत न्यूनतम होगी। 4

(ग) $f(x) = \begin{cases} 2-x; & x \le 2\\ x-2; & 2 < x \le 3 \end{cases}$ द्वारा परिभाषित फलन $2x-3; & x > 3 \end{cases}$ f के असतत् होने वाले सभी बिंदु ज्ञात कीजिए।

इसका ग्राफ भी खींचिए। 4

MTE-01