No. of Printed Pages : 6

BCS-040

BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED) Term-End Examination June, 2024 BCS-040 : STATISTICAL TECHNIQUES

Time : 2 HoursMaximum Marks : 50Note : (i)Attempt both Sections i.e. Section A and
Section B.(ii)Attempt any four questions from
Section A.(iii)Attempt any three questions from
Section B.(iv)Use of non-scientific calculator is
allowed.

Section-A

1. The life of 20 electric bulbs (in hours) are given as follows :

125	160	175	170	111
101	165	150	140	130
120	135	145	155	165
145	105	157	167	153

P. T. O.

(a)	Construct	a	co	ontinu	ious	freq	uency
	distribution	of	the	data	by	taking	class
	width 10.						3

- (b) Draw the histogram of the distribution in given above.
- 2. The marks of four students in BCS-040 examination are given below :

Name	Marks
Amit	40
Preeti	26
Aman	30
Seema	32

Write down all possible samples of size 2 (without replacement) which can be drawn from the above data and show that sample mean (mean of all sample means) is equal to the population mean. 5

- 3. State additive law of probability. There are 300 patients in a certain hospital of which 15 are COVID-19 patients, 13 are typhoid patients while 3 are suffering from both. If a patient is selected at random from the hospital, what is the probability that he/she either COVID-19 or typhoid patient?
- 4. The mean weekly sales of chocolate packets in different departmental stores was 146 packets per store. After an advertisement campaign the mean weekly sales of 16 stores for a typical week was 150 and showed a standard deviation of 10. Was the advertisement campaign successful at 5% level of significance ?

(Given $t_{(15), 0.05} = 1.753$). 5

Define time series with example and write its components.

6. Write short notes on any *two* of the following :

 $2\frac{1}{2}+2\frac{1}{2}$

- (i) Stratified random sampling
- (ii) Correlation
- (iii) Median and Standard deviation

Section-B

7. In an experiment to study whether city smoke affects health, the following data was collected. Use Chi-square test to test the hypothesis that city smoke has effect on health, at 5% level of significance : 10

	Inhale City Smoke		
	Light	Moderate	Heavy
Health affected	17	31	36
Health not affected	38	24	19

(Given $\chi^2_{(2),0.05} = 5.99$).

Cost (in ₹ '000)	Sales (in ₹ '000)
10	15
12	16
13	16
11	15
9	10
11	14
12	14
10	12

8. A company has the following cost and sales data: 10

- (i) Construct a scatter plot for the given data.
- (ii) Find the best linear regression line assuming that cost is an independent variable and sales is a dependent variable.

(iii) Predict sale when cost is ₹ 15,000.

 Describe systematic sampling. The information regarding production of wheat (in thousand kg) in 25 districts is collected for a particular season. Select a possible systematic random sample of 7 units from the data given as follows : 10

23, 20, 30, 37, 76, 36, 13, 36, 16, 58, 53, 83, 10,

15, 13, 17, 12, 16, 17, 21, 18, 61, 31, 71, 20

Also calculate the sample mean from the selected units.

10. Write short notes on any *two* of the following :

5 + 5

- (i) \overline{X} -control chart
- (ii) Goodness of fit test
- (iii) Poisson distribution

BCS-040