M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE [MSC (MACS)]

Term-End Examination June, 2023

MMTE-006: CRYPTOGRAPHY

Time: 2 Hours Maximum Marks: 50

Note: (i) Answer any four questions from question nos. 1 to 5.

- (ii) Question No. 6 is compulsory.
- 1. (a) Define a primitive element in a finite field \mathbf{F}_q . Give a primitive in \mathbf{F}_7 with justification.
 - (b) Let n and b be natural numbers such that $(n_i b) = 1$. When do we say that n is a pseudoprime of the base b? Check whether 91 is a pseudoprime to the base 3.

(c)	Decrypt	the follow	ving clipheı	text which
	was enci	rypted usin	ng Vigenere	Cipher with
	the	key	word	"SECRET",
	KYTXIMGQQIVHO.			

- (d) Explain the Cipher Block chaining and Cipher Feedback modes of operations of block cipher.
- 2. (a) Explain the Blum-Blum-Shub pseduorandom bit generator. Calculate the first five terms generated by Blum-Blum-Shub pseudo-random generator if p = 11, q = 19 and $x_0 = 7$.
 - (b) Explain the Miyaguchi-Prencel method for creating hash function with a diagram. 3
 - (c) Suppose Alice and Bob want to exchange a secret key using Diffie-Hellman key exchange algorithm. They choose the prime 31 with primitive root 3. Bob chooses the secret value 5 and Alice chooses 7. Find the common secret key explaining all the steps.

2

(d) Let n = 21, e = 5 is a RSA cryptosystem. If the plain text is 10, find the cipher text.

2

3. (a) Determine the number of keys in an Affine cipher over \mathbf{Z}_m where m=1225.

- (b) Given the initial sequence 110010111001, find the recurrence relation that generates it.
- (c) Check whether $x^3 + 4x^2 + 4$ is irreducible over \mathbb{Z}_5 .
- 4. (a) Given the values a = 161 and b = 28, find $\gcd(a,b)$ by using the Extended Euclidean algorithm and also find s and t such that $sa + tb = \gcd(a,b)$.
 - (b) Suppose Alice wants to sign messages using Elhamal signature scheme and she chooses p = 29 and 3 as the primitive root. She chooses the secret parameter a = 9. She makes public the values (29, 3, 21). If she wants to send the message 25 to Bob, find the signature if she chooses k = 5. Explain in detail how Bob will verify the signature.
- 5. (a) Solve the discrete logarithm $2^x \equiv 19 \pmod{29} \text{ using Baly-step, Giant step method.}$
 - (b) Decrypt the text 001011011001 that was encrypted twice with the by block cipher

using the key 010100110. The S-boxes are given below: 5

$$S_1 \begin{bmatrix} 101 \ 010 \ 001 \ 110 \ 011 \ 100 \ 111 \ 000 \\ 001 \ 100 \ 110 \ 010 \ 000 \ 111 \ 101 \ 011 \end{bmatrix}$$

$$S_2 \begin{bmatrix} 100 & 000 & 110 & 101 & 111 & 001 & 011 & 000 \\ 101 & 011 & 000 & 111 & 110 & 010 & 001 & 100 \end{bmatrix}$$

- 6. Which of the following statements are true and which are false? Justify your answers with a short proof or a counter example:
 - (a) There is a finite field with 12 elements.
 - (b) Harsh function is used for ensuring confidentiality of information.
 - (c) S boxes provide confusion
 - (d) If n is a product of two primes and use know the value of $\varphi(n)$, we can factorize n.
 - (e) Vigenere cipher is a monoalphabetic, substitution cipher.