No. of Printed Pages: 6

M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. SC. (MACS)]

Term-End Examination June, 2023

MMTE-005: CODING THEORY

Time: 2 Hours Maximum Marks: 50

Note: (i) Answer any four questions from question nos. 1 to 5.

- (ii) Question No. 6 is compulsory.
- (iii) Use of calculator is **not** allowed.
- (iv) Show all the relevant steps. Do the rough work at the bottom or at the side of the page only.
- 1. (a) When do we say that the generator matrix of a [n,k] linear code is in standard form? Check whether the generator matrix:

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

of a linear code **C** is in standard form or not. Also, determine the length and dimension of **C**?

2

(b) Define permutation equivalence of linear codes. Check whether the codes \mathbf{C}_1 and \mathbf{C}_2 with generator matrices $\mathbf{G}_1 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{G}_2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, respectively, are

and $G_2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$, respectively, are

permutation equivalent.

- (c) Let $n \in \mathbb{N}$, q be a power of a prime and $0 \le s < n$. Define the q-cyclotomic coset of s modulo n. Find the 13-cyclotomic set of 1 modulo 17.
- (d) Let **C** be a [7, 4] binary cyclic code with generator polynomial $x^3 + x + 1$. Find the generator matrix and the parity check matrix of the code.
- 2. (a) What is a repetition code? If, in a repetition code in which a message of length two is sent thrice, the codeword 11 10 10 is received, decode the message assuming there is at most one error.
 - (b) Define a cyclic code, Check whether the code {110, 011, 101} is cyclic.

(c) Let C_1 be the $\begin{bmatrix} 4 & 3 & 2 \end{bmatrix}$ binary linear code generated by:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

and let C_2 be the [4, 1, 4]-binary linear code generated by [1111]. Let C be the code obtained through using $(u \mid u + v)$ construction on the codes C_1 and C_2 . Find the generator matrix of C. Also give the length and the dimension of C.

- (d) Find the g.c.d. of $x^5 x^4 + x + 1$ and $x^3 + x$ in \mathbf{F}_5 .
- 3. (a) Construct the Tanner graph for the given parity check matrix H of an LDPC code. Further, does the graph contain a cycle?

 Justify your answer:

 5

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

4. (a) Show that the \mathbb{Z}_4 -linear codes with generator matrices:

[4]

$$G_1 = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 2 & 2 \end{bmatrix} \text{ and } G_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix}$$

are monomially equivalent.

5

	· -
i	$lpha^i$
1	α
2	α^2
3	$\alpha + 2$
4	$\alpha^2 + 2\alpha$
5	$2\alpha^2 + \alpha + 2$
6	$\alpha^2 + \alpha + 1$
7	$\alpha^2 + 2\alpha + 2$
8	$2\alpha^2 + 2$
9	$\alpha + 1$
10	$\alpha^2 + \alpha$
11	$\alpha^2 + \alpha + 2$
12	$\alpha^2 + 2$
13	2

ıt.	5
i	$lpha^i$
14	2α
15	$2\alpha^2$
16	$2\alpha + 1$
17	$2\alpha^2 + \alpha$
18	$\alpha^2 + 2\alpha + 1$
19	$2\alpha^2 + 2\alpha + 2$
20	$2\alpha^2 + \alpha + 1$
21	$\alpha^2 + 1$
22	$2\alpha + 2$
23	$2\alpha^2 + 2\alpha$
24	$2\alpha^2 + 2\alpha + 1$
25	$2\alpha^2 + 1$

Table 1 : Powers of $\alpha \in \mathbf{F}_{27}$, where $\alpha^3 + 2\alpha + 1 = 0$.

(b) If $x, y \in \mathbf{F}_2^n$, show that :

$$wt(x+y) = wt(x) + wt(y) - 2wt(x \cap y)$$

where $x \cap y$ is that vector in \mathbf{F}_2^n which has 1 precisely those positions, where x and yhave 1. Further, show that if \mathbf{C} is a binary code with a generator matrix, each of whose rows have even weight, then every codeword of \mathbf{C} has even weight.

5. (a) Let \mathbf{F}_q have characteristic p. Prove that : 2

$$(\alpha + \beta)^p = \alpha^p + \beta^p$$

- (b) Construct a [13, 10] BCH code over \mathbf{F}_3 with designed distance 2. Use $x^3 + 2x + 1 \in \mathbf{F}_3[x]$ as the primitive polynomial and Table 1.
- (c) If a polynomial generator matrix of an [n, k] convolutional code C is basic and reduced, then prove that it is canonical.

- 6. Which of the following statements are true and which are false? Justify your answer with short proof or a counter-example:
 - (a) The code over F_3 with generator matrix

$$\begin{bmatrix} 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1 \end{bmatrix} \text{ is self-orthogonal.} \qquad \qquad 2$$

- (b) Every cyclic code is self dual. 2
- (c) $x^3 + x 1$ is irreducible over \mathbf{F}_5 .
- (d) There are two different codes with the same generator matrix.
- (e) The number of 3-cyclotomic cosets modulo 26 is 3.