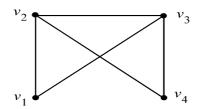
No. of Printed Pages: 4

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]

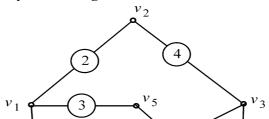
Term-End Examination June, 2023 MMTE-001: GRAPH THEORY

Time: 2 Hours Maximum Marks: 50

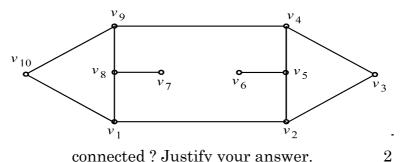
Note: Question No. 1 is compulsory. Answer any four questions from Question Nos. 2 to 7.


Use of calculators is not allowed. Symbols used have their usual meaning.

- 1. State whether the following statements are true or false. Justify your answers with a short proof or a counter-example: $5\times2=10$
 - (i) If G is a graph with 100 vertices and 1500 edges, then $\bar{\rm G}$ has 3450 edges.
 - (ii) The radius and diameter of a complete bipartite graph are always equal.
 - (iii) Q₃ is Eulerian.
 - (iv) K_{5, 6} is 5-edge-chromatic.
 - (v) If a graph G has a perfect matching, then every maximal matching of G is perfect.

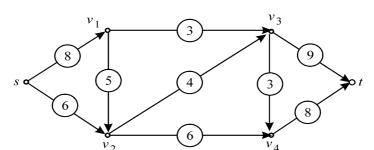

2. (a) Does there exist a graph with all vertices having distinct degrees? Justify your answer.

[2]


- (b) Show that for any connected graph G, diam $(G) \le 2 \operatorname{rad}(G)$.
- (c) Find the number of (v_1, v_2) -walks of length 3 in the following graph: 4

- 3. (a) Let G be a graph with exactly one path between every pair of vertices. Show that G is a tree.
 - (b) Prove that a connected multigraph is Eulerian iff all of its vertices have even degree.
- 4. (a) Show that in a complete binary tree the number of leaves is exactly one more than the number of non-leaves.
 - (b) Compute the distances of all the vertices from v_1 in the following graph, using Dijkstra's algorithm: 6

- (a) Show that the Grötzsch graph 5. 4-chromatic. 5
 - If G is a planar graph, then show that $\delta(G) \leq 5$. 3
 - (c) What is the thickness of the Peterson graph? Justify your answer. 2
- (a) Verify the König-Egerváry theorem for the 6. following graph: 5



connected? Justify your answer.

Show that every Hamiltonian graph is 2-(c) 3 connected.

5

7. (a) Consider the following network N.

Define a function f on the edges set of N as follows:

$$f(sv_1) = 7$$
, $f(sv_2) = 3$, $f(v_1v_2) = 5$
 $f(v_1v_3) = 2$, $f(v_2v_3) = 4$, $f(v_2v_4) = 4$
 $f(v_3v_4) = 2$, $f(v_3t) = 6$, $f(v_4t) = 6$

Check whether f represents a flow on N or not.

(b) Check whether the sequence: 5

is graphic or not.