BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination June, 2023

MTE-13: DISCRETE MATHEMATICS

Time: 2 Hours

Maximum Marks: 50

Note: Attempt five questions in all. Q. No. 7 is compulsory. Answer any four questions from usual meaning. allowed. All the symbols used have their Question Nos. 1 to 6. Calculators are not

- (a) Check whether the complement of isomorphic to C5 or not C_5 is
- **b** How many integers from 0 to 637 are not divisible by either 3 or 5?
- (c) Test the validity of the following argument using a truth table:

cricket match." arrived on time. Therefore, there was no then travelling was not difficult. The teams is difficult. If the teams arrived on time, "If there is a cricket match, then travelling

[2]

MTE-13

- 2 (a) Calculate the Bell number, B₅
- <u></u> Solve the recurrence relation:

ಲ

$$b_n = b_{n-1} + 4(n-1)$$
, when $b_o = 1$.

- (c) $9^n - 5^n$ is divisible by 4 for all $n \ge 1$. Using mathematical induction, prove that
- <u>ω</u> (a) Let G be a connected graph with exactly traceable two odd vertices. Show that G is edge-
- (b) Check whether the following graph is planar or not:

MTE-13

[4]

(b) Write the Boolean expression for the following logic circuit:

4. (a) Prove the identity:

 ω

$$\sum_{i=0}^{m} C(n,i).C(n,m-i) = C(2n,m)$$

for all $0 \le m \le n$.

- (b) Explain the polynomial, $x^4 + x^3 + x$ in terms of the falling factorials.
- (c) Show that if G is a k-regular graph on n vertices, then at least one of k and n is even. Further, construct a 6-regular graph on 9 vertices.
- 5. (a) Reduce the following Boolean expression into its disjunctive normal form:

$$(\sim q \land \sim r) \lor (\sim p \land r)$$

(b) Find the number of distinct integer solutions of the equation:

 $x_1 + x_2 + x_3 + \dots + x_6 = 28$

where $x_i \ge i$ and $1 \le i \le 6$.

(c) Solve the recurrence relation:

$$a_n - 7a_{n-1} + 12 \, a_{n-2} = 2^n$$

for $n \ge 2$ with $a_0 = 5$ and $a_1 = 23$.

- 6. (a) Find the number of ways in which 4 houses can be painted with 6 different colours, if each house has to get a different colour. 2
- (b) If a pair of dice is rolled, what is the probability that the sum on the two dice is odd?
- (c) Check whether or not the following two statements for a graph G are equivalent: 5(i) Any two vertices in G are connected by a unique path.
- (ii) G is a tree.

[6]

MTE-13

MTE-13

Which of the following statements are true which are false? Justify your answer:

(i) The recurrence relation:

$$a_n = a_{n-1}^2 + \sqrt{a_{n-2}}$$

is linear and homogeneous.

(ii) There exists a Boolean expression in variables x_1, x_2 and x_3 with CNF as:

$$(x_1 \lor x_2) \land (x_2 \lor x_3) \land (x_3 \lor x_1)$$

- (iii) The edge chromatic number of the graph $\ensuremath{K_{10}}$ is 9.
- (iv) "Every even number is divisible by 4 or every equilateral tirangle is an isosceles triangle" is a true statement.
- (v) If a coin is tossed four times, the probability of getting more tails than heads

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

जून, 2023 एम.टी.ई.-13 : विविक्त गणित

समय : 2 घण्टे

अधिकतम अंक : 50

नोट: कुल पाँच प्रश्न हल कीजिए। प्रश्न सं. ७ करना अनिवार्य हैं। प्रश्न सं. १ से ६ तक किन्हीं चार प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों की अनुमित नहीं है। प्रतीकों के अपने सामान्य अर्थ हैं।

- 1. (क) जाँच कीजिए कि C_5 का पूरक C_5 के तुल्याकारी है या नहीं।
 2

 (ख) 0 से 637 तक के पूर्णांकों में से कितने पूर्णांक
- (ख) 0 स 637 तक के पूर्णाकों में से कितने पूर्णांक 3 या 5 से विभाज्य नहीं हैं?
 (ग) सत्य सारणी के प्रयोग से, निम्नलिखित तर्क की वैधता की जाँच कीजिए:
- "यदि क्रिकेट मैच होता है, तो यात्रा मुश्किल है। यदि दल समय पर आ जाते हैं तो यात्रा मुश्किल नहीं है। दल समय पर पहुँच जाते हैं। इसिलिए, कोई क्रिकेट मैच नहीं था।"

[8]

(ग) नीचे दिए गए लॉजिक परिपथ के लिए बूलीय

व्यंजक लिखिए :

5 (क) बेल संख्या, B₅ परिकलित कीजिए।

(ख) पुनरावृत्ति संबंध
$$b_n = b_{n-1} + 4(n-1)$$
, जहाँ $b_0 = 1$ है, को हल कीजिए। 3

(<u>H</u> गणितीय आगमन के अं सभी $n \ge 1$ 왕, सिद्धान्त लिए 9^n-5^n , से सिद्ध कीजिए

ÿ (क) मान लीजिए G एक ऐसा संबद्ध ग्राफ है जिसमें

केवल दो विषम शीर्ष हैं। दिखाइए अं Ω

कोर-अनुरेखीय है।

(_ख) जाँच कीजिए कि नीचे दिया गया ग्राफ समतलीय

या नहीं:

विभाज्य है।

(क) सर्वसिमका:

$$\sum_{i=0}^{m} C(n,i).C(n,m-i) = C(2n,m)$$

को सभी $0 \le m \le n$ के लिए सिद्ध कीजिए। 3

(ख) बहुपद x^4+x^3+x को पतती क्रमगुणितों के पदों में व्यक्त कीजिए।

(ग) दिखाइए कि 9 शीर्षो पर एक 6-नियमित ग्राफ बनाइए। k-नियमित ग्राफ है, कम कोई यदि G, nएक तो kसम संख्या और nशीर्षा होगा। वाला में से कम आगे, ख्र

S (क) निम्नलिखित बूलीय व्यंजक को इसके सिम्मलन प्रसामान्य समघात में समानीत कीजिए :

 $(\sim q \land \sim r) \lor (\sim p \land r)$

(ख) समोकरण

 $x_1 + x_2 + x_3 + \dots + x_6 = 28$

हलों की संख्या ज्ञात कीजिए। जहाँ $x_i \geq i$ और $1 \leq i \leq 6$ sul. 위 पूर्णांक

<u>–</u> पुनरावृत्ति संबंध :

 $a_n - 7a_{n-1} + 12\,a_{n-2} = 2^n,\; n \geq 2$

पहाँ $a_0 = 5$ अरे $a_1 = 23$ JU! 왕, हल

कीजिए।

4

6. (क) उन तरीकों की संख्या ज्ञात कीजिए जिनमें 4 घरों

को 6 भिन-भिन रंगों से इस प्रकार रंगा जाए

कि प्रत्येक घर को एक अलग रंग मिले। 2

(ii) G एक वृक्ष है।

निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य हैं ? अपने उत्तरों की पुष्टि कीजिए : 10

(i)पुनरावृत्ति संबंध $a_n = a_{n-1}^2 + \sqrt{a_{n-2}}$ रैखिक और समघात है।

 $\wedge (x_3 \vee x_1)$ है। जिसका CNF, $(x_1 \lor x_2) \land (x_2 \lor x_3)$ (ii) चरों x_1, x_2, x_3 में

एक

ऐसा

बूलीय

व्यजक

[10]

(ख) यदि दो पासों को एक साथ फेंका जाता है, तो संख्याओं का योगफल एक विषम संख्या है ? 3 क्या प्रायिकता है कि दोनों पासों पर प्राप्त

(<u>H</u> जाँच कीजिए कि किसी ग्राफ निम्नलिखित दो कथन तुल्य हैं या नहीं : Ω 왕, लिए

(i) G के कोई भी दो शीर्ष एक अद्वितीय पथ क्र <u>अं</u> जुं

P. T. O.

[11]

- m (iii) ग्राफ $m K_{10}$ की कोर-वर्णिक संख्या 9 है।
- (iv) "प्रत्येक सम संख्या 4 से विभाज्य है या प्रत्येक समबाहु त्रिभुज एक समद्विबाहु त्रिभुज होता है।" एक सत्य कथन है।
- (v) यदि एक सिक्का 4 बार उछाला जाता है, तो चितों से ज्यादा पट आने की प्रायिकता $\frac{1}{4}$ है।