BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination June, 2023

MTE-11: PROBABILITY AND STATISTICS

Time: 2 Hours Maximum Marks: 50

Note: (i) Question **No.** 7 is compulsory.

(ii) Attempt any **four** questions from Question Nos. 1 to 6.

(iii) Symbols have their usual meanings.

(iv) Use of calculator is not allowed.

1. (a) The life of the bulbs produced by two companies A and B are given below:

Length of Life (in hundred hours)	Company A (No. of bulbs)	Company B (No. of bulbs)
5—7	3	3
7—9	8	15
9—11	25	20
11—13	10	10
13—15	4	2
Total	50	50

Which company's bulbs have more average life from the point of view of length of life?

5

- (b) An urn contains 2 red, 3 black and 5 white balls. If 3 balls are drawn at random without replacement, find the probabilities that:
 - (i) all 3 balls are black.
 - (ii) two balls are red and one ball is black.
- (c) If random variable X has binomial distribution with mean 4 and variance 1, find $P[X \le 1]$.
- 2. (a) If a random variable X has mean 4 and variance 9 and another independent random variable Y has mean 2 and variance 5, then find:
 - (i) E(2X + Y 5)
 - (ii) Var(2X + Y 5)
 - (b) If a random variable has the following density function:

$$f(x) = \begin{cases} 2e^{-2x}; & x \ge 0 \\ 0; & x < 0 \end{cases}$$

[3] MTE-11

then find:

(i) mean (μ) and variance (σ^2) of X,

- (ii) $P[|X \mu| \ge 1]$
- (iii) Use Chebyshev's inequality to obtain an upper bound of $P[|X \mu| \ge 1]$ and compare with the result obtained in part (ii) (given $e^{-3} = 0.0498$).
- 3. (a) Let X₁, X₂,....X_n be a random sample from a Poisson distribution with parameter λ.
 Find an estimator of λ using:
 - (i) the method of moments
 - (ii) the method of maximum likelihood.
 - (b) If the variance of a Poisson distribution is 6, find the probability $P(X \ge 2)$.
 - (c) State the conditions under which binomial distribution tends to Poisson distribution. 2
- 4. (a) A preparation of insulin was being studied to determine its effect on reducing the blood-sugar level in rats. Five rats were injected with different dosages. Reductions

[4] MTE-11

in their blood-sugar levels are given in the following table:

6

Dosage (x)	Reduction in blood sugar (y)
20	30
25	25
25	40
30	35
40	50

- (i) Identify the dependent and independent variables.
- (ii) Find the regression line of y on x.
- The probability that a candidate will pass (b) examination is 0.70.Find the an probability that she will pass the examination at the third attempt. 2
- (c) If 3 books are selected at random from a shelf containing 5 novels, 3 books of poems and a dictionary, what is the probability that 2 novels and 1 book of poems are selected?

- 5. (a) If the marks of students in a subject are normally distributed with mean 79 and variance 25, then find how many students in a class of 200 receive marks:

 4
 - (i) between 75 and 82?
 - (ii) more than 82 ? [Given $\phi(0.6) = 0.7257, \phi(0.8) = 0.7881$]
 - (b) Suppose X is a gamma random variable with parameters α and λ . If E(X) = 2 and Var(X) = 4, then find α and λ .
 - (c) For the following joint probability distribution of (X, Y):

Y X	1	2	3
1	1/20	1/10	1/10
2	1/20	1/10	1/10
3	1/10	1/10	1/20
4	1/10	1/10	1/20

- (i) Find marginal distribution of X.
- (ii) Find P[Y = 2 | X = 4].
- (iii) Examine whether two events X = 4 and Y = 2 are independent.

[6] MTE-11

6. (a) Let X_1 be a random sample of size 1 from a population with p.d.f.:

$$f(x, \theta) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right); x \ge 0, \theta > 0.$$

Obtain best critical region of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 > \theta_0$.

- (b) The probability of hitting a target in any attempt is 0.6. Find the probability that it would be hit on the third attempt?
- 7. Which of the following statements are true or false? Give a short proof or a counter example in support of your answer:

 5×2=10
 - (i) For two independent events A and B, if $P(A) \ = \ 0.2 \quad \text{and} \quad P(B) \ = \ 0.4, \quad \text{then}$ $P(A \cap B) = 0.6 \, .$
 - (ii) Frequency density of a class for any distribution is the ratio of total frequency to class width.

[7] MTE-11

- (iii) If correlation coefficient between X and Y is 0.62, then correlation coefficient between 5+6X and 7-3Y will be 0.62.
- (iv) The sufficient conditions for an estimator $(T_n) \text{ to be a consistent estimator of } \theta \text{ are } E(T_n) \to \theta \text{ as } n \to \infty \text{ and } Var(T_n) \to \infty \text{ and } n \to \infty.$
- (v) The mean deviation is least when deviations are taken about the mean.

MTE-11

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

जून, 2023

एम.टी.ई.-11 : प्रायिकता और सांख्यिकी

समय : 2 घण्टे

अधिकतम अंक : 50

नोट: (i) प्र. सं. 7 अनिवार्य है।

- (ii) प्रश्न संख्या 1 से 6 तक कोई **चार** प्रश्न कीजिए।
- (iii) प्रतीकों के अर्थ सामान्य हैं।
- (iv) कैलकुलेटरों का प्रयोग करने की अनुमित नहीं है।
- (क) दो कम्पनियों A और B द्वारा निर्मित बल्बों के जीवनकाल के आँकडे अग्रलिखित हैं:

जीवनकाल की	कम्पनी A	कम्पनी B
लंबाई (सैकड़ों	(बल्ब की	(बल्ब की
घंटे में)	संख्या)	संख्या)
5—7	3	3
7—9	8	15
9—11	25	20
11—13	10	10
13—15	4	2
कुल	50	50

जीवनकाल की लंबाई को ध्यान में रखकर ज्ञात कीजिए कि किस कम्पनी के बल्बों का माध्य जीवनकाल अधिक है।

- (ख) एक थैले में 2 लाल, 3 काली और 5 सफेद गेंद हैं। यदि थैले से 3 गेंदें बिना प्रतिस्थापन के निकाली जाती हैं तो निम्नलिखित प्रायिकता ज्ञात कीजिए:
 - (i) सभी 3 गेंदें काली हैं।
 - (ii) दो गेंद लाल और एक गेंद काली है।
- (ग) यदि एक यादृच्छिक चर X द्विपद बंटन में ह जिसका माध्य 4 और प्रसरण 1 है, तो P[X ≤ 1] ज्ञात कीजिए।

- (क)यदि एक यादृच्छिक चर X का माध्य 4 और प्रसरण 9 है तथा एक दूसरे स्वतंत्र यादृच्छिक चर
 Y का माध्य 2 और प्रसरण 5 है तो निम्नलिखित ज्ञात कीजिए :
 - (i) E(2X + Y 5)
 - (ii) Var(2X + Y 5)
 - (ख)यदि एक यादृच्छिक चर का घनत्व फलन निम्नलिखित है:

$$f(x) = \begin{cases} 2e^{-2x}; & x \ge 0\\ 0; & x < 0 \end{cases}$$

तो निम्नलिखित ज्ञात कीजिए:

- (i) X के माध्य (μ) और प्रसरण (σ^2)
- (ii) $P[|X \mu| \ge 1]$
- (iii) शेबीशेव असिमका का प्रयोग करके
 P[| X − µ |≥1] का उपिर पिरबंध निकालिए
 तथा भाग (ii) से प्राप्त पिरणाम से उसकी
 तुलना कीजिए। (दिया है: e⁻³ = 0.0498)

3.	(क)मान लीजिए कि X_1, X_2, X_n एक λ प्राचल
	वाले प्वांसा बंटन से लिया गया यादृच्छिक प्रतिदर्श
	है। निम्नलिखित का प्रयोग करके λ के आकलक
	ज्ञात कीजिए:

- (i) आघूर्ण विधि
- (ii) अधिकतम संभावित विधि
- (ख)यदि एक प्वांसा बंटन का प्रसरण 6 है, तो प्रायिकता P(X ≥ 2) ज्ञात कीजिए। 2
- (ग)वे प्रतिबंध लिखिए जिनसे द्विपद बंटन, प्वांसा बंटन की ओर बढ़ता है। 2
- 4. (क)इंसुलिन की एक तैयार सामग्री का अध्ययन चूहों के रक्त शुगर में इसके प्रभाव को कम करने के लिए किया गया। पाँच चूहों को इसकी अलग-अलग मात्रा दी गयी। उनके रक्त शुगर के स्तर में हुई कमी अग्रलिखित तालिका में दी गयी है:

मात्रा (x)	रक्त शुगर में कमी (y)
20	30
25	25
25	40
30	35
40	50

- (i) स्वतंत्र और अस्वतंत्र चर पहचानिए।
- (ii) x पर y की समाश्रयण रेखा ज्ञात कीजिए।
- (ख) एक अभ्यर्थी के एक परीक्षा में सफल होने की प्रायिकता 0.70 है। वह प्रायिकता क्या होगी कि अभ्यर्थी परीक्षा में तीसरी बार में पास होगी? 2
- (ग) एक अलमारी, जिसमें 5 नॉवल, 3 कविता की किताबें और एक शब्दकोश है, से 3 किताबें यादृच्छया चुनी गयीं। वह प्रायिकता क्या है कि 2 नॉवल और एक कविता की किताब चुनी गयी?

2

5. (क)यदि कुछ विद्यार्थियों के अंक प्रासामान्य बंटित हं जिनका माध्य 79 और प्रसरण 25 है, तो 200 विद्यार्थियों की एक कक्षा में कितने विद्यार्थियों के अंक:

- (i) 75 और 82 के बीच हैं ?
- (ii) 82 से अधिक हैं ?

[दिया है : $\phi(0.6) = 0.7257, \phi(0.8) = 0.7881$]

(ख)मान लीजिए कि X एक α और λ प्राचल वाला गामा यादृच्छिक चर है। यदि E(X)=2 और Var(X)=4 है तो α और λ ज्ञात कीजिए। 2

4

Y	1	2	3
1	1/20	1/10	1/10
2	1/20	1/10	1/10
3	1/10	1/10	1/20
4	1/10	1/10	1/20

- (i) X का सीमांत बंटन ज्ञात कीजिए।
- (ii) P[Y = 2 | X = 4] ज्ञात कीजिए।

- (iii) जाँच कीजिए कि दो घटनाएँ X = 4 और Y = 2 स्वतंत्र हैं।
- 6. (क) $f(x,\theta) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right); x \geq 0, \theta > 0$ p.d.f. की एक समिष्ट से आमाप 1 का एक यादृच्छिक प्रतिदर्श X लीजिए। $H_0: \theta = \theta_1$ विरुद्ध $H_1: \theta = \theta_1 > \theta_0$ के परीक्षण के लिए आकार α का उच्च क्रांतिक प्रदेश प्राप्त कीजिए। 6
 - (ख) एक लक्ष्य को किसी भी प्रयास में भेदने को प्रायिकता 0.6 है। तीसरी बार प्रयास करने पर लक्ष्य को भेदने की प्रायिकता क्या होगी ?
- 7. निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से असत्य हैं ? अपने उत्तर के पक्ष में एक संक्षिप्त उपपत्ति या प्रतिउदाहरण दीजिए : 5×2=10
 - (i) दो स्वतंत्र घटनाओं A और B के लिए, यदि $P(A) = 0.2 \qquad \text{और} \qquad P(B) = 0.4 \qquad \vec{\epsilon}, \qquad \vec{n}$ $P(A \cap B) = 0.6 \quad \vec{\epsilon} = \vec{l}$

- (ii) किसी बंटन के लिए एक वर्ग का बारंबारता घनत्व कुल बारंबारता का वर्ग की चौड़ाई के साथ अनुपात होता है।
- (iii) यदि X और Y के बीच सहसम्बन्ध गुणांक 0.62 है तो 5+6X और 7-3Y के बीच सहसम्बन्ध गुणांक 0.62 होगा।
- (iv) एक आकलक (T_n) के संगत आकलक (θ) होने का पर्याप्त प्रतिबंध $E(T_n) \to \theta$ जब $n \to \infty$ और $Var(T_n) \to \infty$ जब $n \to \infty$ है।
- (v) माध्य विचलन न्यूनतम होता है जबिक विचलन माध्य के परित: लिया जाता है।