BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination June, 2023 MTE-06: ABSTRACT ALGEBRA

Time: 2 Hours Maximum Marks: 50

Note: (i) Question No. 7 is compulsory.

- (ii) Answer any **four** questions from the rest of the questions.
- (iii) Use of calculator is not allowed.
- (iv) Do the rough work at the side of the page or at the bottom.
- 1. (a) Suppose G is a non-abelian group and $a,b \in G$. Show by the principle of mathematical induction that $(aba^{-1})^n = ab^na^{-1} \ \forall n \in \mathbb{N}.$
 - (b) Suppose $f(x) = 2x^2 + 1$, $g(x) = x^4 + x^2 + x + 2$ in $\mathbf{Z}_3[x]$. Find the quotient and the remainder when g(x) is divided by f(x) in $\mathbf{Z}_3[x]$.

(c) Check if the following polynomial is irreducible:

$$x^6 + 6x^4 + 12x + 12$$
 in **Z**[x].

- (d) Define the order of an element in a finite group. Find the order of $\overline{3}$ in \mathbb{Z}_{11} .
- 2. (a) Define homomorphism between rings. Check whether the map $f: \mathbf{Z} \to \mathrm{M}_2(\mathbf{Z})$ defined by $f(n) = \begin{pmatrix} n & 0 \\ 0 & 0 \end{pmatrix}$ is a ring homomorphism.
 - (b) Define a normal subgroup. Check whether $\{1, (1\ 3)\}$ is a normal subgroup of h.
 - (c) Give an example of a commutative ring with unity R and elements $a,b \in \mathbb{R}, b \neq 0$ such that ab = b and $a \neq 1$.
 - (d) Express the permutation:

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 6 & 4 \end{pmatrix}$$

first as a product of disjoint cycles and then as a product of transpositions. What is the signature of α ?

3. (a) Define a binary operation * a on **Z** by a*b=a+b+2ab. Check if * is associative. Find the identify element under *. Which element are invertible

- under * ? Find the inverse of each invertible element under *. 5
- (b) Let ${\bf C}^2$ be the ring under componentwise addition and multiplication. Find an ideal I of ${\bf C}^2$ that is isomorphic to ${\bf C}$ as a ring. Check whether $\frac{{\bf C}^2}{I} \simeq {\bf C}$ as rings. Justify your answer.
- 4. (a) Let $\mathbf{R} = \mathbf{Z} + \sqrt{2} \, \mathbf{Z}$ and $S = \left\{ \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \mid a, b \in \mathbf{Z} \right\}$. Show that $\theta : \mathbb{R} \to \mathbb{S}$ defined by $\theta \left(a + \sqrt{2} \, b \right) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$ is an isomorphism of rings.
 - (b) Explain, how \mathbf{Q}/\mathbf{Z} is a subgroup of \mathbf{R}/\mathbf{Z} . Show that $\mathbf{Z} + a \in \mathbf{R}/\mathbf{Z}$ has finite order if and only if $a \in \mathbf{Q}$.
- 5. (a) Let G be a group of order 54. How many Sylow 3-subgroups, Sylow 2-subgroups and sylow 5-subgroups can G have? Give reasons for your answers.
 - (b) Define a relation R on the set of integers **Z** by a R b if 3 divides a b. Show that R is an equivalence relation. Also find all distinct equivalence classes.

- 6. (a) Show that the ring $\mathbf{Q}[x]$ has got infinitely many maximal ideals.
 - (b) Prove that $\mathbf{Z}\left[\sqrt{-3}\right]$ is not a UFD by giving two different factorisations of 4 as product of irreducible elements in $\mathbf{Z}\left[\sqrt{-3}\right]$.
 - (c) Prove that any group of prime order is cyclic.
- 7. Which of the following statements are true and which are false? Justify your answers with a short proof or a counter-example: 5×2=10
 - (a) If $f : \mathbf{Z} \to \mathbf{Z}$ is a function and $A \subset \mathbf{Z}$, then $f^{-1}(f(A)) \subset A$.
 - (b) There is a non-trivial group homomorphism from \mathbf{Z}_8 to \mathbf{Z} .
 - (c) The group S₇ has an element of order 11.
 - (d) There is a field that has got exactly 6 elements.
 - (e) Union of two subrings of a ring is a subring of the ring.

MTE-06

स्नातक उपाधि कार्यक्रम (बी. डी. पी.) सत्रांत परीक्षा

जून, 2023

एम.टी.ई.-06 : अमूर्त बीजगणित

समय : 2 घण्टे

अधिकतम अंक : 50

- नोट: (i) प्रश्न सं. 7 करना अनिवार्य है।
 - (ii) प्रश्न सं 1 से 6 तक किन्हीं **चार** प्रश्नों के उत्तर दीजिए।
 - (iii) कैल्कुलेटर के प्रयोग करने की अनुमित नहीं है।
 - (iv) रफ कार्य पृष्ठ के किनारे या नीचे कीजिए।
- 1. (क) मान लीजिए कि G एक अन्–आबेली समूह है और $a,b \in G$ । आगमन विधि द्वारा सिद्ध कीजिए कि :

 $(aba^{-1})^n = ab^n a^{-1} \ \forall n \in \mathbf{N}$

(ख) मान लीजिए कि $f(x) = 2x^2 + 1$, $g(x) = x^4 + x^2 + x + 2$, $\mathbf{Z}_3[x]$ में हैं। $\mathbf{Z}_3[x]$ में g(x) को f(x) से विभाजन करने पर प्राप्त भागफल और शेषफल निकालिए।

(ग) जाँच कीजिए कि निम्नलिखित बहुपद अखण्डनीय है:

$$x^6 + 6x^4 + 12x + 12 \in \mathbf{Z}[x]$$

- (घ) एक परिमित समूह में एक अवयव की कोटि परिभाषित कीजिए। ${f Z}_{11}$ में ${f 3}$ का कोटि निकालिए।
- 2. (क) वलयों के बीच की समाकारिता परिभाषित कीजिए। जाँच कीजिए कि $f(n) = \begin{pmatrix} n & 0 \\ 0 & 0 \end{pmatrix}$ द्वारा परिभाषित फलन $f: \mathbf{Z} \to \mathrm{M}_2(\mathbf{Z})$ एक वलय समाकारिता है।
 - (ख) प्रसामान्य उपसमूह को परिभाषित कीजिए। जाँच कीजिए कि $\{1,(1\ 3)\}$, h की प्रसामान्य उपसमूह है या नहीं।
 - (ग) उदाहरण के तौर पर एक क्रमविनिमेय वलय R और दो अवयव $a,b \in \mathbb{R}, b \neq 0$, दीजिए जिसके लिए ab = b हो और $a \neq 1$ हो।
 - (घ) क्रमचय $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 6 & 4 \end{pmatrix}$ को पहले असंयुक्त चक्रों के गुणनफल के रूप में और उसके बाद पक्षान्तरणों के गुणनफलन के रूप में व्यक्त कीजिए। α का चिह्नक क्या है ?

- 3. (क) \mathbf{Z} पर a*b=a+b+2ab द्वारा एक द्वि-आधारी संक्रिया परिभाषित कीजिए। जाँच कीजिए कि * साहचर्य है। * के सापेक्ष तत्समक अवयव ज्ञात कीजिए। * के सापेक्ष कौन-से अवयवों का प्रतिलोम है ? * के सापेक्ष जो भी अवयव का प्रतिलोम है उसका प्रतिलोम निकालिए।
 - (ख) ${\bf C}^2$ लीजिए जो संगत घटकों के योग और गुणन के सापेक्ष वलय है। ${\bf C}^2$ की एक ऐसी गुणजावली I निकालिए जो वलय क तौर पर ${\bf C}$ से तुल्याकारी है। जाँच कीजिए वलय क तार पर ${{\bf C}^2 \over {\bf I}} \simeq {\bf C}$ । अपने उत्तर की पुष्टि कीजिए। 5
- 4. (क) मान लीजिए $\mathbf{R} = \mathbf{Z} + \sqrt{2} \, \mathbf{Z}$ और $\mathbf{S} = \left\{ \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \mid a,b \in \mathbf{Z} \right\}$ । दिखाइए कि $\theta: \mathbf{R} \to \mathbf{S}$ जो $\theta \left(a + \sqrt{2} \, b \right) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$ द्वारा परिभाषित है, एक वलय तुल्याकारिता है। 5
 - (ख) बताइए कि \mathbf{Q}/\mathbf{Z} क्यों \mathbf{R}/\mathbf{Z} का एक उपसमूह है। दिखाइए कि $\mathbf{Z} + a \in \mathbf{R}/\mathbf{Z}$ की परिमित कोटि तभी और केवल तभी होती है जब $a \in \mathbf{Q}$ हो।
- 5. (क) मान लीजिए G कोटि 54 वाला एक समूह है। G के कितने सीलो 3-उपसमूह, सीलो 2-उपसमूह और सीलो 5-उपसमूह होते हैं ? अपने उत्तर की पुष्टि कीजिए।

- (ख) पूर्णांकों के समुच्चय Z पर एक सम्बन्ध R इस प्रकार परिभाषित कीजिए कि aRb यदि 3, a-b को विभाजित करता हो। दिखाइए कि R एक तुल्याकारी सम्बन्ध है। भिन्न-भिन्न तुल्याकारी वर्ग भी ज्ञात कीजिए।
- 6. (क) दिखाइए कि वलय $\mathbf{Q}[x]$ की अनंतत: अनेक गुणजाविलयाँ हैं।
 - (ख) $\mathbf{Z}\left[\sqrt{-3}\right]$ में अखंडनीय अवयवों के गुणनफल के रूप में 4 के दो अलग-अलग गुणनखंडन देते हुए सिद्ध कीजिए कि $\mathbf{Z}\left[\sqrt{-3}\right]$ यू. ए. फ. डी. नहीं है।
 - (ग) सिद्ध कीजिए कि अभाज्य कोटि वाला प्रत्येक समूह चक्रीय होता है।3
- 7. बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। अपने उत्तर की पुष्टि, क्रमशः, एक लघु उपपत्ति या प्रतिउदाहरण द्वारा कीजिए : 5×2=10
 - (क) यदि $f: \mathbf{Z} \to \mathbf{Z}$ एक फलन है और $\mathbf{A} \subset \mathbf{Z}$ है तो $f^{-1}\big(f(\mathbf{A})\big) \subset \mathbf{A}$ है।
 - (ख) **Z**₈ से **Z** तक एक अतुच्छ समूह समाकारिता होती है।
 - (ग) समूह S₇ में कोटि 11 वाला एक अवयव है।
 - (घ) ठीक-ठीक 6 अवयव वाला एक क्षेत्र होता है।
 - (ङ) एक वलय की दो उप-वलयों का सम्मिलन भी उस वलय की एक उप-वलय है।