POST GRADUATE DIPLOMA IN COMPUTER APPLICATIONS (PGDCA-NEW)

Term-End Examination

June, 2023

MCS-202: COMPUTER ORGANISATION

Time: 3 Hours Maximum Marks: 100

Weightage: 70%

Note: Question Number 1 is compulsory and carries 40 marks. Attempt any three questions from Question No. 2 to Question No. 5.

- 1. (a) Perform the following operations using signed 2's complement notation of size 8 bits, which includes the sign bit. Also indicate overflow or no-overflow, giving reasons. Thereof:
 - (i) Add 39 and + 126

- (ii) Subtract 38 from 90
- (iii) Add -79 and -49
- (b) Simplify the following function using Karnaugh's map: 5

$$F(A, B, C, D) = \Sigma(5, 6, 8, 11, 13, 14, 15)$$

Draw the logic circuit for the simplified function.

- (c) Explain the Direct Cache mapping scheme with the help of an example. 5
- (d) What is an interrupt? List all the steps that are required to be performed by hardware or software to process an interrupt.
- (e) Explain the steps required to process
 Branch (BR) instruction, subroutine call
 and return instruction of a computer which
 uses a stack for storing the return address.
 You may assume the necessary registers
 required for this purpose.

 5

- (f) Explain the horizontal and vertical microinstructions with the help of a suitable diagram.5
- (g) Explain the following instructions of 8086 microprocessor with the help of an example:
 - (i) SHL
 - (ii) RCL
- (h) Write a 8086 assembly language program to find the largest value in an array consisting of 5 values. You may assume that these values are stored in the memory. The largest value may be kept in AX register. Make suitable assumptions. 5
- 2. (a) Perform the following conversions: 5
 - (i) $(225)_{10}$ to hexadecimal
 - (ii) (AAA)₁₆ to octal
 - (iii) (6761)₈ to hexadecimal
 - (iv) (ABC)₁₆ to decimal
 - (v) $(225)_8$ to decimal

(b)	Explain the functions of the components of
	a central processing unit with the help of a
	diagram. 5
(c)	Draw the truth table and logic diagram of
	a 4 \times 1 multiplexer and explain its
	functioning. 5
(d)	Draw the logic diagram of a ripple counter
	and explain its functioning. 5
(a)	Explain the structure of magentic disk
	with the help of a diagram. Also, explain
	the term constant angular velocity (CAV)
	in this context. 5
(b)	Explain the concept of memory
	interleaving with the help of an example. 4
(c)	What is the role of Input/Output
	interfaces? Explain. 5
(d)	Explain the following terms in the context
	of Input/Output technologies : 6
	(i) Refresh rate
	(ii) Optical resolution

(iii) Impact printers

3.

4. (a	a)	Explain the following addressing schemes
		with the help of an example for each: 6
		(i) Immediate addressing
		(ii) Direct addressing
		(iii) Register addressing
(k	b)	Explain the microoperations required for
		Fetching an Instruction (FI). You may
		assume suitable registers for this. 5
(0	c)	Explain the working of a Wilke's control-
		unit with the help of a diagram. 5
(0	d)	Explain any four differences between the
		RISC and CISC machines. 4
5. (a	a)	Compute the physical address in 8086
		microprocessor for the following pairs: (all
		values are in hexadecimal):
		(i) $CS: IP = 10FFh: 0111h$
		(ii) $DS \cdot RX = 0399h \cdot 90FFh$

(iii) SS : SP = 0111h : 2222h

MCS-202

- (b) Explain the differences between .COM programs and .EXE programs, in the context of Assembly language, with the help of an example.
- (c) Write a program in 8086 assembly language to interchange the values of two byte locations in the memory.
- (d) Explain the concept of FAR and NEAR procedures in 8086 assembly language. 4