MMT-007 (P) (Set-2)

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Differential Equations and Numerical Solutions

Duration: 1½ hours Maximum Marks: 40

Note: 1. There are two questions in this paper totaling 30 marks.

- 2. Answer both of them.
- 3. Remaining 10 marks are for the viva-voce.
- 1. Write a program in 'C' language to solve the initial value problem

$$\frac{dy}{dx} = y^2 \cos x, y(0) = 1$$

in the interval [0, 2] using fourth order Milne's Predictor-Corrector method with h = 0.4. Calculate the starting values using the fourth order Runge-Kutta method with the same step-length. Perform two corrector iterations per steps.

2. Write a program in 'C' language to solve the equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, 0 \le x \le a, \ t \ge 0$$

$$u(x, 0) = \frac{x}{2} (1 - x), \frac{\partial u}{\partial t}(x, 0) = 0$$

$$u(0, t) = 0, u(a, t) = B$$

Using the explicit method

$$u_i^{n+1} = 2u_i^n - u_i^{n-1} + r^2[u_{i+1}^n - 2u_i^n + u_{i-1}^n]$$

with user input a, B, h and r.

Use the central difference approximations to the derivatives to obtain initial condition. Also, extend your program to integrate for two time steps. Test your program for user input

$$a = 1$$
, $B = 0$, $h = \frac{1}{4}$, $r = \frac{1}{2}$.