COURSE CODE: MCS-208 MASTER OF COMPUTER APPLICATIONS (MCAOL)

DATA STRUCTURE AND ALGORITHMS

Total Marks-100

Time Duration-180 Minutes

Note: There are three Sections in this paper. Attempt all the Sections. All algorithms should be written nearer to C language.

Section-I (Short Answer Type Questions) $(5\times4=20)$

Note: Attempt any five questions. Each question carries 4 marks.

- 1. Give simplified big-O notation for the following growth functions:
- a) $30n^{2}$
- b) $10n^3 + 6n^2$
- c) $5n \log n + 30n$
- d) log n + 30n
- 2. Give an example of an application for which time complexity is more important than space complexity. Justify your answer.
- 3. What is a triangular matrix? What is a tridiagonal matrix? Give examples.
- 4. Explain the process of implementation of singly linked lists using array(s).
- 5. Discuss the underflow and overflow problem in stacks with a suitable example.
- 6. Compare the array and linked list representations of a queue.
- 7. If a tree has 45 edges, how many vertices does it have? Justify your answer.

Section-II (Medium Answer Type Questions) (5×10=50)

Note: Attempt any five questions. Each question carries 10 marks.

- 8. Write an algorithm for the multiplication of two matrices.
- 9. Sort the following list of integers in descending order using quick sort:

3, 12, 1, 90, 25, 99, 100

Write all the steps involved.

- 10. Write an algorithm to find the number of vowels in a given text file. Make necessary assumptions.
- 11. Define AVL tree. Explain various AVL tree rotations.
- 12. Write an algorithm to find strongly connected components of a graph. Make necessary assumptions.
- 13. Write an algorithm for performing binary search.
- 14. What is Index Mapping? What are the challenges with Index mapping?

Section-III (Long Answer Type Questions) $(2 \times 15 = 30)$

Note: Attempt any two questions. Each question carries 15 marks.

- 15. What is a Queue? List and explain the operations that can be performed on a queue.
- 16. What is Time Complexity? How does it differ from storage complexity? Give an example for each of time complexity and storage complexity.
- 17. Write Kruskal's algorithm.