BACHELOR OF SCIENCE (GENERAL) (BSCG)

Term-End Examination June, 2023

BPHET-141: ELEMENTS OF MODERN PHYSICS

Time: 2 Hours Maximum Marks: 50

Note: (i) Attempt all questions The marks of each question are indicated against it.

- (ii) Symbols have their usual meanings.
- (iii) You may use a calculator or log tables.
- (iv) The values of physical constants are given at the end.

1. Answer any *five* parts:

 $5 \times 2 = 10$

- (a) What is the difference between the Galilean principle of relativity and the principle of relativity stated by Einstein?
- (b) Explain why we do not observe the effects of time dilation in everyday phenomena?

- (c) Calculate the wavelength of a photon which has an energy of 8.0 MeV.
- (d) The uncertainty in the energy of a short lived particle is 0.5 MeV. What is the smallest life time the particle can have?
- (e) Determine the eigen value of the operator $\hat{H} = i\hbar \frac{\partial}{\partial t}$ for the wave function :

$$\Psi = Ne^{i(kx - \omega t)}$$

- (f) Write the Schrödinger equation for a free particle and the expression for its energy.
- (g) An element characterised by A=238 and Z=92, loses 8 alpha (α) and 6 beta (β) particles in a decay process. What will the final stable product be ?
- (h) Calculate the mass defect (in u) of $^{56}_{26}$ Fe given that :

$$m_n = 1.008665 \text{ u}, m \left({}_1^1 \text{H} \right) = 1.007825 \text{ u},$$

$$M \left({}^{56} \text{Fe} \right) = 55.934932 \text{ u}.$$

2. Answer any *two* parts:

 $2 \times 5 = 10$

- (a) Two spaceships of proper length L_0 approach the earth from opposite directions at velocities $\pm \frac{3c}{5}$. What is the length of one of the spaceships with respect to the other?
- (b) Derive the relativistic energy momentum relation for a free particle.
- (c) (i) A spaceship is receding from earth at a speed of 0.40~c. The wavelength of light emitted by a source in the spaceship is measured to be $\lambda = 450~\mathrm{nm}$ on the spaceship. What would the wavelength of this light be as measured by an observer on earth?

3

- (ii) Show that for $v \ll c$, the expression for the relativistic kinetic energy approaches that of the classical kinetic energy.
- 3. Answer any *two* parts:

 $5 \times 2 = 10$

(a) (i) State the probabilistic interpretation of the wave function.

- (ii) List the conditions that a wave function $\psi(x,t)$ must satisfy to be an acceptable solution of the Schrödinger equation.
- (b) A particle of mass m has the following wave function:

$$\psi(x) = \begin{cases} Nx e^{-ax} & \text{for } x > 0 \\ 0 & \text{for } x < 0 \end{cases}$$

If the total energy of the particle is zero, determine its potential energy function.

(c) Calculate the commutator:

$$[\hat{x} \, \hat{P}x, \hat{H}] \text{ for } \hat{H} = \frac{\hat{P}_X^2}{2m} + \hat{V}(x).$$

4. Answer any **one** part:

 $10 \times 1 = 10$

(a) The potential function for a symmetric infinite potential well is given by:

$$V(x) = \begin{cases} \infty & \text{for } x < -L \\ 0 & \text{for } -L < x < L \\ \infty & \text{for } x > L \end{cases}$$

Solve the time-independent Schrödinger equation for a particle of mass m in this potential. Obtain the even and odd parity eigen-functions and energy eigen values.

(b) Obtain the general solution of the timeindependent Schrödinger equation for a particle of mass m for a potential function defined by:

$$V(x) = \begin{cases} 0 & \text{for } x < 0 \\ V_0 & \text{for } 0 \le x \le a \\ 0 & \text{for } x > a \end{cases}$$

when the energy of the particle is $E < V_0$. Write down the boundary conditions. Define the reflection and transmission coefficients and the tunnelling length.

5+2+3

5. Answer any *two* parts:

 $5 \times 2 = 10$

(a) Calculate the energy of reaction (Q - Value) in MeV in the fusion reaction involving two deuterons to form a tritium and a proton:

$$_{1}^{2}H + _{1}^{2}H \rightarrow _{1}^{3}H + _{1}^{1}H$$
Take $m(_{1}^{2}H) = 2.0141029 \text{ u}$,
 $m(_{1}^{3}H) = 3.016049 \text{ u}$ and
 $m(_{1}^{1}H) = 1.008665 \text{ u}$
 $1\text{u} = 931.5 \text{ MeV/c}^{2}$.

- (b) Explain why electrons cannot reside inside the nucleus.
- (c) Plot number of neutrons versus the number of protons for naturally occurring nuclei. Explain the features of this plot.

2+3

Physical constants:

$$h = 6.626 \times 10^{-34} \,\mathrm{J}\text{-s}$$

$$m_e = 9.1 \times 10^{-31} \text{ kg}$$

$$m_p = 1.6725 \times 10^{-27} \; \mathrm{kg}$$

$$m_n = 1.6747 \times 10^{-27} \text{ kg}$$

$$c = 3 \times 10^8 \text{ ms}^{-1}$$

$$h = 1.054 \times 10^{-34} \text{ J-s}$$

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

BPHET-141

विज्ञान स्नातक (सामान्य) (बी. एस. सी. जी.) सत्रांत परीक्षा

जून, 2023

बी.पी.एच.ई.टी.-141 : आधुनिक भौतिकी के तत्व

समय : 2 घण्टे

अधिकतम अंक : 50

- नोट: (i) सभी प्रश्न कीजिए। प्रत्येक प्रश्न के अंक उसके सामने दिए गये हैं।
 - (ii) प्रतीकों के अपने सामान्य अर्थ हैं।
 - (iii) आप कैल्कुलेटर या लॉग सारणी का उपयोग कर सकते हैं।
 - (iv) भौतिक नियतांकों के मान अंत में दिए गये हैं।
- 1. कोई पाँच भाग कीजिए:

 $5 \times 2 = 10$

(क) गैलीलीय आपेक्षिकता के नियम और आइन्सटाइन द्वारा दिये गये आपेक्षिकता के नियम में क्या अन्तर है ?

- (ख) काल वृद्धि का प्रभाव हमें रोजाना की परिघटनाओं में क्यों नहीं दिखाई देता ? समझाइए।
- (ग) ऊर्जा 8.0 MeV वाले एक फोटॉन की तरंगदैर्घ्य परिकलित कीजिए।
- (घ) लघु आयु वाले एक कण की ऊर्जा में अनिश्चितता 0.5 MeV है। इस कण का न्यूनतम जीवनकाल क्या हो सकता है ?
- (ङ) तरंग फलन $\psi=\mathrm{N}e^{i(kx-\omega t)}$ के लिए, संकारक $\hat{\mathrm{H}}=i\hbar\,rac{\partial}{\partial t}$ का आइगेन मान परिकलित कीजिए।
- (च) मुक्त कण के लिए श्रीडिंगर समीकरण और उसकी ऊर्जा का व्यंजक लिखिये।
- (छ) A = 238 एवं Z = 92 वाले तत्व के क्षय प्रक्रम में 8 अल्फा (α) और 6 बीटा (β) कण उत्सर्जित होते हैं। अंतिम स्थायी उत्पाद क्या होगा ?
- (ज) नाभिक ${}^{56}_{26}$ Fe की द्रव्यमान क्षति (u में) परिकलन कीजिए। दिया है :

 $m_n = 1.008665 \text{ u}, m \left({}_{1}^{1}\text{H} \right) = 1.007825 \text{ u},$ $M \left({}_{56}^{6}\text{Fe} \right) = 55.934932 \text{ u}.$ 2. कोई दो भाग कीजिए:

- $2 \times 5 = 10$
- (क) उचित लंबाई L₀ वाले दो अंतिरक्ष यान विपरीत दिशाओं से पृथ्वी की ओर ± 3 c की चालों से गितमान हैं। एक अंतिरक्ष यान की दूसरे अंतिरक्ष यान के सापेक्ष लंबाई क्या है ?
- (ख) मुक्त कण के लिए आपेक्षिकीय ऊर्जा-संवेग सम्बन्ध व्युत्पन्न कीजिए।
- (ग) (i) एक अंतिरक्ष यान 0.40 c की चाल से पृथ्वी से दूर जा रहा है। अंतिरक्ष यान में स्थित प्रकाश के एक स्नोत द्वारा उत्सर्जित प्रकाश की तरंगदैर्घ्य, अंतिरक्ष यान पर λ = 450 nm मापी जाती है। पृथ्वी पर स्थित प्रेक्षक इस तरंगदैर्घ्य का मान क्या मापेगा ?
 - (ii) सिद्ध कीजिए कि सीमा v << c में आपेक्षिकीय गतिज ऊर्जा का व्यंजक क्लासिकी गतिज ऊर्जा के व्यंजक की ओर प्रवृत्त होता है।

3. कोई दो भाग कीजिए:

 $5 \times 2 = 10$

- (क) (i) तरंग फलन की सांख्यिकीय व्याख्या का कथन दीजिए।
 - (ii) श्रोडिंगर समीकरण का मान्य हल होने के लिए एक तरंग फलन को जिन प्रतिबंधों को संतुष्ट करना होता है उन्हें सूचीबद्ध कीजिए।

(ख) द्रव्यमान m के किसी कण का तरंग फलन निम्नलिखित है :

$$\psi(x) = \begin{cases} Nx e^{-ax} & x > 0 \text{ के लिए} \\ 0 & x < 0 \text{ के लिए} \end{cases}$$

यदि कण की कुल ऊर्जा शून्य हो, तो कण का स्थितिज ऊर्जा फलन निर्धारित कीजिए।

- (ग) $\hat{H} = \frac{\hat{P}_X^2}{2m} + \hat{V}(x)$ के लिए कम्यूटेटर $[\hat{x} \hat{P}x, \hat{H}]$ परिकलित कीजिए।
- 4. कोई एक भाग कीजिए:

 $10 \times 1 = 10$

(क) एक समित अनंत विभव कूप के लिए विभव फलन निम्नलिखित है:

$$V(x) = egin{cases} \infty, & x < -L \ \hat{\sigma} \ \text{लिए} \ 0, & -L < x < L \ \hat{\sigma} \ \text{लिए} \ \infty, & x > L \ \hat{\sigma} \ \text{लिए} \end{cases}$$

इस विभव में स्थित द्रव्यमान *m* के एक कण के लिए काल स्वतंत्र श्रोडिंगर का हल कीजिए। सम और विषम पैरिटी के आइगेन फलन और उनके संगत आइगेन ऊर्जा प्राप्त कीजिए। 5+3+2

(ख) निम्नलिखित विभव फलन:

$$V(x) = \begin{cases} 0, & x < 0 \text{ $\hat{\sigma}$ ferv} \\ V_0, & 0 \le x \le a \text{ $\hat{\sigma}$ ferv} \\ 0, & x > a \text{ $\hat{\sigma}$ ferv} \end{cases}$$

में द्रव्यमान m के किसी कण के लिए काल-स्वतंत्र श्रोडिंगर समीकरण का हल प्राप्त कीजिए, जब कण की ऊर्जा $E < V_0$ हो। परिसीमा प्रतिबंध लिखिये। परावर्तन गुणांक, संचरण गुणांक और सुरंगन लंबाई की परिभाषा दीजिए। 5+2+3

5. कोई दो भाग कीजिए:

 $5 \times 2 = 10$

(क) निम्नलिखित संलयन अभिक्रिया का (MeV में)

Q-मान परिकलित कीजिए जिसमें दो ड्यूटेरॉन

संलियत होकर एक ट्राइटियम (tritium) और

एक प्रोटॉन निर्मित करते हैं:

$${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{1}^{3}H + {}_{1}^{1}H$$

मान लीजिए:

$$m\binom{2}{1}H$$
) = 2.0141029 u ,

$$m(^{3}_{1}\text{H}) = 3.016049 \ u$$
 और

$$m(^{1}_{1}\text{H}) = 1.008665 \ u$$

 $1u = 931.5 \text{ MeV}/c^2$.

- (ख) व्याख्या कीजिए कि इलेक्ट्रॉन नाभिक में क्यों नहीं रह सकता।
- (ग) प्राकृतिक रूप से प्राप्त नाभिकों के लिए न्यट्रॉन संख्या का प्रोटॉन संख्या के सापेक्ष आलेख खींचिए। इसकी विशेषताओं की व्याख्या कीजिए।

2+3

भौतिक नियतांक :

$$h = 6.626 \times 10^{-34} \text{ J-s}$$

$$m_{\rho} = 9.1 \times 10^{-31} \text{ kg}$$

$$m_p = 1.6725 \times 10^{-27} \text{ kg}$$

$$m_n = 1.6747 \times 10^{-27} \text{ kg}$$

$$c = 3 \times 10^8 \text{ ms}^{-1}$$

$$h = 1.054 \times 10^{-34} \text{ J-s}$$

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$