4

2

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination June, 2022

MTE-06: ABSTRACT ALGEBRA

Time: 2 hours Maximum Marks: 50

Note: Question no. 7 is compulsory. Answer any four questions from questions no. 1 to 6. Use of calculators is not allowed.

- 1. (a) Form an operation table of $G=\{\overline{5},\ \overline{15},\ \overline{25},\ \overline{35}\,\}\quad under\quad multiplication$ (mod 40). Check whether or not G is a group. 4
 - (b) The map $\phi : \mathbb{R}[x] \to M_3[\mathbb{R}]$ is defined by

$$\phi(a_0+a_1x+\ldots+a_nx^n)= \left| \begin{array}{cccc} a_0 & a_1 & a_2 \\ 0 & a_0 & a_1 \\ 0 & 0 & a_0 \end{array} \right|.$$

Show that ϕ is a ring homomorphism. Determine ker ϕ also.

(c) Check whether $\mathbb{Z} \times \mathbb{Z}$ is a PID or not.

2.	(a)	Show	that	<	X	>	is	not	a	maximal	ideal	in
		$\mathbb{Z}[\mathbf{x}].$										

(b) List all the subgroups of \mathbb{Z}_{18} , along with their generators.

2

3

2

3

2

5

- (c) Let $H = \langle (1 \ 2) \rangle$ and $K = \langle (1 \ 2 \ 3) \rangle$ be subgroups of S_3 . Show that $S_3 = HK$. Is S_3 an internal direct product of H and K?

 Justify your answer.
- (d) Check whether or not {(2, 5), (1, 3), (5, 2), (3, 1)} is an equivalence relation on {1, 2, 3, 5}.
- **3.** (a) Show that any group of order 35 is cyclic. 5
 - (b) Use the Eisenstein's criterion for irreducibility of a polynomial over $\mathbb{Z}[x]$ to test whether $8x^3 + 6x^2 9x + 24$ is irreducible over $\mathbb{Z}[x]$ or not. Also, obtain the quotient field of $\mathbb{Q}[x]/<8x^3 + 6x^2 9x + 24>$.
 - (c) Let R be a ring and let $a \in R$ be such that $a^2 = 1$. Let $S = \{ara \mid r \in R\}$. Show that S is a subring of R.
- **4.** (a) Show that $\mathbb{Z}[\sqrt{-13}]$ is not a UFD by giving, with justification, two different factorisations of 40 into irreducible elements.

2

MTE-06

- (b) Check whether S is a subring of R in each of the following cases:
 - (i) $S = \{\frac{a}{b} \in \mathbb{Q} \mid b \text{ is not divisible by 3}\},\$ $R = \mathbb{Q}.$

5

4

3

3

4

6

- (ii) S is the set of functions which are linear of the functions $\{Id, \cos nt, \sin nt \mid n \in \mathbb{Z}\} \text{ and }$ $R = \{f \mid f : \mathbb{R} \to \mathbb{R}\}.$
- **5.** (a) Show that $f: (\mathbb{R}^+, \times) \to (\mathbb{R}, +)$, defined by $f(a) = \log_{10} a$, is an isomorphism of groups, where \mathbb{R}^+ is the set of positive real numbers.
 - (b) Give an example of a ring R such that $a^2 = a$ for all $a \in R$. Show that any such ring is commutative.
 - (c) Let $(\mathbf{C}^*, .)$ denote the group of non-zero complex numbers and let $S = \{z \in \mathbf{C}^* \mid |z| = 1\}. \text{ Show that } \mathbf{C}^*/S \simeq \mathbb{R}^+,$ where (\mathbb{R}^+, \times) is the group of positive real numbers.
- **6.** (a) Show that a permutation is even if and only if its signature is 1. Find the signature of $(2\ 3\ 4)\in S_4$ using the definition of signature.
 - (b) Show that in a finite commutative ring, every non-zero element is either a zero divisor or a unit. Also, find the number of zero divisors of \mathbb{Z}_{20} .

MTE-06 3 P.T.O.

- 7. Which of the following statements are *True* and which are *False*? Justify your answer with a short proof or a counter-example. $5\times2=10$
 - (a) The characteristic of the ring $\mathbb{Z}_m \times \mathbb{Z}_n$ under componentwise addition and multiplication is the g.c.d. of m and n.
 - (b) The $\left\{\begin{bmatrix} a & a \\ a & a \end{bmatrix} \middle| a \in \mathbb{Q}, a \neq 0 \right\}$ has no identity with respect to the binary operation of multiplication of 2×2 matrices.
 - (c) Any subring of a ring is an ideal.
 - (d) If a and b are elements of a group G with O(a) = 2, O(b) = 3, then O(ab) = 6.
 - (e) There is no onto homomorphism from \mathbb{Z}_{15} to $\mathbb{Z}.$

MTE-06

4

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा जून, 2022

एम.टी.ई.-06: अमूर्त बीजगणित

समय : २ घण्टे अधिकतम अंक : 50

नोट: प्रश्न सं. 7 अनिवार्य है । प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए । कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

 (क) G = {5, 15, 25, 35} की गुणन (mod 40) (यानि मोड्युलो (40)) के अंतर्गत एक संक्रिया सारणी बनाइए। जाँच कीजिए कि G एक समूह है या नहीं।

(ख) दर्शाइए कि

$$\phi(\mathbf{a}_0 + \mathbf{a}_1\mathbf{x} + \dots + \mathbf{a}_n\mathbf{x}^n) = \begin{vmatrix} \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{0} & \mathbf{a}_0 & \mathbf{a}_1 \\ \mathbf{0} & \mathbf{0} & \mathbf{a}_0 \end{vmatrix}$$

द्वारा परिभाषित फलन $\phi:\mathbb{R}[x]\to M_3[\mathbb{R}]$ एक वलय समाकारिता है । $\ker\phi$ भी ज्ञात कीजिए ।

(ग) जाँच कीजिए कि क्या $\mathbb{Z} \times \mathbb{Z}$ एक PID है या नहीं । 2

2.	(क)	दर्शाइए कि $< x >, \mathbb{Z}[x]$ में एक उच्चिष्ठ गुणजावली नहीं है ।	2
	(碅)	\mathbb{Z}_{18} के सभी उपसमूहों की, इनके जनकों के साथ, एक सूची बनाइए ।	3
	(ग)	मान लीजिए कि $H = < (1 \ 2) > $ और $K = < (1 \ 2 \ 3) > S_3$ के उपसमूह हैं । दर्शाइए कि $S_3 = HK$. क्या S_3 , H और K का आंतरिक अनुलोम गुणनफल है ? अपने उत्तर की पुष्टि कीजिए ।	3
	(ঘ)	जाँच कीजिए कि $\{1, 2, 3, 5\}$ पर $\{(2, 5), (1, 3), (5, 2), (3, 1)\}$ एक तुल्यता संबंध है या नहीं ।	2
3.	(क)	दर्शाइए कि कोटि 35 वाला कोई भी समूह चक्रिय होता है।	5
	(ख)	$\mathbb{Z}[x]$ पर किसी बहुपद की अखण्डनीयता के लिए आइसनस्टाइन के निकष का प्रयोग करते हुए, जाँच कीजिए कि क्या $\mathbb{Z}[x]$ पर $8x^3+6x^2-9x+24$ अखंडनीय है नहीं । $\mathbb{Q}[x]/<8x^3+6x^2-9x+24>$ का भागफल क्षेत्र भी ज्ञात कीजिए ।	3
	(ग)	मान लीजिए कि R एक वलय है तथा $a\in R$ इस प्रकार है कि $a^2=1$. मान लीजिए कि $S=\{ara\mid r\in R\}$. दर्शाइए कि S,R की एक उपवलय है ।	2
4.	(ক)	पुष्टि के साथ, 40 के अखंडनीय अवयवों वाले दो अलग-अलग गुणनखंडन देते हुए, दर्शाइए कि	
		$\mathbb{Z}[\sqrt{-13}]$ एक UFD नहीं है ।	5

(碅)	जाँच	कीजिए	कि	क्या	निम्न	में	से	प्रत्येक	स्थिति	में	S,
	R क	ा एक उप	ग्वल [.]	य है	या नह	तें :					

(i) $S = \{\frac{a}{b} \in \mathbb{Q} \mid b \mid 3 \mid \text{से विभाजित नहीं } \vec{R} \},$ $R = \mathbb{O}.$

5

3

3

4

6

- (ii) S ऐसे फलनों का समुच्चय है जो फलनों $\{ \text{Id, cos nt, sin nt } | n \in \mathbb{Z} \}$ के रैखिक संयोजन हैं तथा $R = \{ f | f : \mathbb{R} \to \mathbb{R} \}$.
- 5. (क) दर्शाइए कि $f(a) = \log_{10} a$ द्वारा परिभाषित $f: (\mathbb{R}^+, \times) \to (\mathbb{R}, +) \text{ समूहों की एक तुल्याकारिता है,}$ जहाँ \mathbb{R}^+ धनात्मक वास्तविक संख्याओं का समुच्चय है ।
 - (ख) ऐसे वलय R का एक उदाहरण दीजिए कि जिसके लिए सभी $a \in R$ के लिए $a^2 = a$ हो । दर्शाइए कि ऐसा कोई भी वलय क्रमविनिमेय होगा ।
 - (ग) मान लीजिए कि (C*, .) शून्येतर सम्मिश्र संख्याओं का समूह व्यक्त करता है तथा मान लीजिए कि S = {z ∈ C* | |z| = 1}. दर्शाइए कि C*/S ≃ ℝ+ है, जहाँ (ℝ+, ×) धनात्मक वास्तविक संख्याओं का समूह है ।
- 6. (क) दर्शाइए कि एक क्रमचय तभी और केवल तभी सम होता है जब उसका चिह्नक 1 हो । चिह्ननक की परिभाषा का प्रयोग करते हुए, $(2\ 3\ 4)\in S_4$ का चिह्ननक ज्ञात कीजिए।
 - (ख) दर्शाइए कि एक परिमित क्रमविनिमेय वलय में, प्रत्येक शून्येतर अवयव या तो एक शून्य भाजक होता है या एक इकाई होता है । Z₂₀ के शून्य भाजकों की संख्या भी जात कीजिए ।

MTE-06 7 P.T.O.

- 7. निम्नलिखित में से कौन-से कथन *सत्य* हैं और कौन-से असत्य ? अपने उत्तर की पुष्टि एक लघु उपपत्ति या प्रत्युदाहरण द्वारा दीजिए । $5 \times 2 = 10$
 - (क) संगत घटकों के योग और गुणन के अंतर्गत वलय $\mathbb{Z}_m imes \mathbb{Z}_n$ का अभिलक्षणिक m और n का g.c.d. (महत्तम सार्व भाजक) है।
 - (ख) समुच्चय

$$\left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \middle| a \in \mathbb{Q}, a \neq 0 \right\}$$

का 2×2 आव्यूहों के गुणन की द्विआधारी संक्रिया के सापेक्ष कोई तत्समक अवयव नहीं है।

- (ग) किसी भी वलय का उपवलय एक गुणजावली होती है।
- (घ) यदि a और b परिमित समूह G के अवयव हैं, O(a) = 2, O(b) = 3, तो O(ab) = 6 है।
- (ङ) \mathbb{Z}_{15} से \mathbb{Z} तक कोई आच्छादक समाकारिता नहीं है।