MSTE-002

POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

June, 2021

MSTE-002 : INDUSTRIAL STATISTICS-II

Time : 3 hours

Maximum Marks : 50

Note :

- Question no. 1 is compulsory. Attempt any four from the remaining questions no. 2 to 7.
- (ii) Use of non-programmable scientific calculator is allowed.
- (iii) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
- (iv) Symbols have their usual meanings.
- 1. State whether the following statements are *True* or *False*. Give reasons in support of your answers. $5 \times 2=10$
 - (a) In a regression model

$$\mathbf{Y} = \mathbf{B}_0 + \mathbf{B}_1 \mathbf{X}_1 + \mathbf{B}_2 \mathbf{X}_2 + \mathbf{B}_3 \mathbf{X}_3 + \mathbf{e}$$

if $H_0: B_1 = 0$ and $H_0: B_3 = 0$ are rejected and $H_0: B_2 = 0$ is not rejected, then the variable X_2 will remain in the model.

MSTE-002

(b) The following figure represents Economic Order Quantity (EOQ) model with uniform demand, and replenishment rate :

- (c) The moving average method in time series removes the seasonal as well as irregular effects.
- (d) If the basic solutions for a system of equations are (2, 0, -1), $(0, 3\cdot 2, -2)$ and (0, 2, 3), then only (0, 2, 3) is feasible.
- (e) In regression analysis, if $SS_{Reg} = 2.84$ and $SS_{Res} = 4.26$, then coefficient of determination is 0.4.
- 2. Use penalty (Big-M) method to solve the following LP problem : 10

Maximize $z = 5x_1 + x_2$

subject to the constraints :

 $5x_1 + 2x_2 \le 20$ $x_1 \ge 3, x_2 \le 5$ and $x_1, x_2 \ge 0.$

MSTE-002

3. (a) A batch of five jobs can be assigned to five different machines. The time required (in hours) for each job on each machine is given in the following table :

Machine Job	M_1	M_2	M_3	M ₄	${ m M}_5$
J_1	10	5	13	15	16
J_2	3	9	18	13	6
J_3	10	7	2	2	2
J_4	7	11	9	7	12
${ m J}_5$	7	9	10	4	12

Find an optimal assignment schedule of jobs to different machines which minimize the total set-up time. Also find the optimal total time.

- (b) Arrivals of the customers at a barber shop are considered to be Poisson with an average arrival rate 3 per hour. The service time is assumed to be distributed exponentially with mean 12 minutes. Find
 - (i) the probability that a person arriving at the shop will have to wait,
 - (ii) the average number of customers at the shop.

3

7

4. A company wants to test the effect of age and gender on the productivity (in terms of units produced by the employees per month). The HR manager has taken a random sample of 10 employees and collected information given below :

Employee	Productivity (in units)	Age (in years)	Gender (0 for female and 1 for male)
1	35	40	1
2	26	34	0
3	25	28	0
4	36	34	1
5	30	38	0
6	21	26	1
7	26	31	1
8	36	38	1
9	27	31	1
10	25	31	0

Fitaregressionmodel.Alsoestimateproductivity of a male employee of 35 years.10

5. A company is interested in forecasting the demand for one of its products. The data on demand for the last 12 months are given below :

Month	Demand (in 100 units)
January	15
February	14
March	16
April	17
May	15
June	18
July	20
August	22
September	23
October	21
November	24
December	26

- (i) Compute 3-monthly moving average.
- (ii) Forecast the demand for all the months using exponential smoothing technique for $\omega = 0.2$.
- (iii) Plot the demands obtained in (i). 3+5+2

MSTE-002

P.T.O.

- **6.** (a) Write short notes on the following :
 - (i) Residual Plot
 - (ii) Normal Probability Plot
 - (b) The following data give the time needed to process Jobs A and B on five machines M₁, M₂, M₃, M₄ and M₅, that is, for each machine. Calculate the total time required to complete both jobs.

	Sequence	M_1	M_2	M_3	M_4	${\rm M}_5$
Job A :	Time (in hrs)	6	8	4	12	4

	Sequence	M_2	M_3	M_1	${ m M}_4$	M_5
Job B :	Time (in hrs)	10	8	6	4	12

7. (a) Suppose a stationary time-series has 8 successive observations as follows :

> 140, 120, 130, 150, 100, 120, 150, 130 Calculate :

- (i) Autocovariances C_0 , C_1 , C_2 , C_3 and C_4 .
- (ii) Autocorrelation coefficients r_1 , r_2 , r_3 and r_4 .
- (iii) Plot the Correlogram.

MSTE-002

6

5

(b) The production department of a company requires 3,600 kg of raw material for manufacturing a particular item per year. It has been estimated that the cost of placing an order is ₹ 36 and cost of carrying inventory is 25% of the investment cost in the inventories. The price of raw material is ₹ 10 per kg. Find the economic lot size to be ordered and the total minimum cost.

4