MCA (Revised) Term-End Examination June, 2021

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours

Maximum Marks : 50

Note: *Question no.* **1** *is* **compulsory***. Attempt any* **three** *questions from the rest.*

- (a) A software company offers an initial annual salary of ₹ 3,00,000 and an annual increment of 25% of previous year's salary. Find the recurrence relation for the salary at the beginning of the nth year.
 - (b) Let G (V, E) be an undirected graph having n vertices and e edges, then $\sum_{i=1}^{n} di = 2e$. 4
 - (c) Find the generating function of the following sequences : 4
 - (i) $a_n = 2^n \quad n \ge 0$
 - (ii) $a_n = n \quad n \ge m$
 - (d) Draw the following graph. Also find whether the graph is planar or not. 5

k₅, k_{3,3}

MCS-033

4

(e) Show that the graph is a Hamiltonian circuit.

2. (a) Determine whether the following graphs are isomorphic.

(b) Show that the following graph has no Euler circuit but has an Eulerian trail.

5

- **3.** (a) If G is a connected graph with $(n \ge 3)$ vertices and edges and no circuit of length 3, show that $e \le 2n 4$. 5
 - (b) Find the chromatic number of each graph.

5

5

5

5

5

4. (a) Solve the following recurrence :

$$y_{n+2} - y_{n+1} - 2y_n = n^2$$

- (b) Let G be a graph with n vertices. Prove that the following statements are equivalent:
 - (i) G has no cycles and (n-1) edges.
 - (ii) Any two vertices of G are connected by exactly one path.
- 5. (a) Find the generating function which will give the number of integral solutions x + y + z = 5 if $0 \le x < 5, 2 \le y \le 6, 5 \le z \le 8$, x is even and y is odd.
 - (b) Solve the following recurrence :

$$a_{n+1}^2 = 5a_n^2$$
 where $a_n > 0$
 $a_n = 2$ and also find a_n