MCA (Revised)

Term-End Examination
 June, 2021

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) A software company offers an initial annual salary of ₹ $3,00,000$ and an annual increment of 25% of previous year's salary. Find the recurrence relation for the salary at the beginning of the $\mathrm{n}^{\text {th }}$ year.
(b) Let G (V, E) be an undirected graph having n vertices and e edges, then $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{di}=2 \mathrm{e} . \quad 4$
(c) Find the generating function of the following sequences :
(i) $\mathrm{a}_{\mathrm{n}}=2^{\mathrm{n}} \mathrm{n} \geq 0$
(ii) $\mathrm{a}_{\mathrm{n}}=\mathrm{n} \quad \mathrm{n} \geq \mathrm{m}$
(d) Draw the following graph. Also find whether the graph is planar or not.

$$
\mathrm{k}_{5}, \mathrm{k}_{3,3}
$$

(e) Show that the graph is a Hamiltonian circuit.

2. (a) Determine whether the following graphs are isomorphic.

(b) Show that the following graph has no Euler circuit but has an Eulerian trail.

3. (a) If G is a connected graph with ($\mathrm{n} \geq 3$) vertices and edges and no circuit of length 3 , show that $\mathrm{e} \leq 2 \mathrm{n}-4$.
(b) Find the chromatic number of each graph.

4. (a) Solve the following recurrence :

$$
\mathrm{y}_{\mathrm{n}+2}-\mathrm{y}_{\mathrm{n}+1}-2 \mathrm{y}_{\mathrm{n}}=\mathrm{n}^{2}
$$

(b) Let G be a graph with n vertices. Prove that the following statements are equivalent:
(i) G has no cycles and ($\mathrm{n}-1$) edges.
(ii) Any two vertices of G are connected by exactly one path.
5. (a) Find the generating function which will give the number of integral solutions $x+y+z=5$ if $0 \leq x<5,2 \leq y \leq 6,5 \leq z \leq 8$, x is even and y is odd.
(b) Solve the following recurrence :

$$
\begin{aligned}
& a_{n+1}^{2}=5 a_{n}^{2} \text { where } a_{n}>0 \\
& a_{0}=2, \text { and also find } a_{8} .
\end{aligned}
$$

