MCA (Revised)

Term-End Examination June, 2021

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Write recursive binary search algorithm and analyse its run time complexity.
(b) Solve the following Chain-Matrix Multiplication of M_{1}, M_{2}, M_{3} and M_{4} using Dynamic programming :

Given :
$\left\langle\mathrm{M}_{1}, \quad \mathrm{M}_{2}, \quad \mathrm{M}_{3}, \quad \mathrm{M}_{4}\right\rangle \quad$ with dimensions $\langle(14 \times 6),(6 \times 90),(90 \times 4),(4 \times 35)\rangle$
(c) Explain Chomsky's classification of grammars. Write Context-Free Grammar (CFG) for the language

$$
\begin{equation*}
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{~b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mathrm{~d}^{\mathrm{m} \mid \mathrm{m}, \mathrm{n} \geq 1\} .}\right. \tag{10}
\end{equation*}
$$

(d) Using Karatsuba's method, find the value of the product 1026732×732912.
Also analyze its Run time complexity in worst case.
2. (a) Write Randomized Quicksort algorithm for worst case linear time selection of an element (say χ). Also compare Randomized quicksort algorithm with Quicksort algorithm.
(b) Differentiate between Big-oh (O) and Theta (θ) Asymptotic notation. Show that: 10
(i) $2 \mathrm{x}^{3}+3 \mathrm{x}^{2}+1=\mathrm{O}\left(\mathrm{x}^{3}\right)$
(ii) $3 x^{3}+2 x^{2}+1 \neq \theta\left(x^{2}\right)$
3. (a) Write Prim's algorithm and determine its time complexity.
(b) Differentiate between Graph and Spanning tree. Draw all the spanning trees of the following weighted connected graph :

(c) Explain how 0/1 Knapsack problem is solved using dynamic programming.
4. (a) Compare time complexity of DFS and BFS algorithm. For the given graph, write DFS and BFS traversal sequence from node A.

(b) Explain the following :
(i) Halting problem of Turing Machine
(ii) Principle of Optimality in Dynamic Programming
5. (a) Prove that if L_{1} and L_{2} are context-free languages, then $L_{1} L_{2}$ is also a context-free language.
(b) Find the Regular Expression for the following Finite-Automata :

(c) Define Kleene closure with suitable examples. 4
(d) By using Principle of Mathematical Induction, show that 6 divides $n^{3}-n$, where n is a non-negative integer. 4

