MCA (Revised) / BCA (Revised)

Term-End Examination

June, 2021

MCS-013 : DISCRETE MATHEMATICS

Time : 2 hours

Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Write the truth value of the conjunction of : "The earth is round" and " $3>4$ ".
(b) Use Mathematical Induction to prove that :
$1+\frac{1}{4}+\frac{1}{9}+\ldots \frac{1}{\mathrm{n}^{2}} \leq 2-\frac{1}{\mathrm{n}} \quad \forall \mathrm{n} \in \mathrm{N}$.
(c) If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is a function such that $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-2$, prove that f is injective. Also find the inverse of f.
(d) Show that $p \vee(q \wedge r)$ and $(p \vee q) \wedge(p \vee r)$ are logically equivalent.
(e) A and B are two mutually exclusive events such that $\mathrm{P}(\mathrm{A})=0 \cdot 4$ and $\mathrm{P}(\mathrm{B})=0 \cdot 2$. What is the probability that:
(i) A does not occur ?
(ii) A or B does not occur ?
(iii) Either A or B does not occur?
(f) Find the number of ways of placing n people in $\mathrm{n}-1$ rooms, no room being empty.
2. (a) What is integer partition? Write down all the partitions of 8 . Also find P_{8}^{4} and P_{8}^{7}.
(b) Find Boolean Expression for the following logical circuit :

(c) Let two functions be such that $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2$ and $g(x)=2 x$. Define fog and gof.
3. (a) Reduce the following Boolean Expression to simpler form :
$E\left(X_{1}, X_{2}, X_{3}\right)=\left(X_{1} \wedge X_{2} \wedge X_{3}\right) \vee\left(X_{1} \wedge X_{2}\right) \vee$

$$
\left(\mathrm{X}_{2} \wedge \mathrm{X}_{3}\right)
$$

(b) Show that $\sim(p \rightarrow q) \rightarrow p$ is a tautology.
(c) Prove that $\sqrt{2}$ is irrational.
4. (a) What is Relation ? How is relation different from function? Explain any two properties of relations with an example.
(b) A company has the following professionals : Project Leaders - 5, Team Leaders - 6, System Architects - 3 .

Find how many different committees can be formed of 10 professionals, each containing at least 2 Project Leaders, at least 3 Team Leaders and at least 1 System Architect.
(c) Find the dual of $\mathrm{A} \cup \mathrm{B} \cap \mathrm{C} . \quad 2$
5. (a) Explain the Identity Laws of Boolean
Algebra.
(b) State and prove the Addition Theorem of Probability. 4
(c) Verify that $\mathrm{p} \wedge \mathrm{q} \wedge \sim \mathrm{p}$ is a contradiction.
(d) What is Exclusive Disjunction? Write truth table for $\mathrm{p} \oplus \mathrm{q}$.

