BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination June, 2021

BCS-042 : INTRODUCTION TO ALGORITHM DESIGN

Time: 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory and carries 20 marks. Answer any three questions from the rest.

1. (a) Arrange the following classes of algorithms in increasing order of growth :
(i) $\mathrm{O}\left(\mathrm{n}^{3}\right)$
(ii) $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
(iii) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(iv) $\mathrm{O}(\sqrt{\mathrm{n}})$
(b) Write the recurrence relation for the following recursive function :

Fib (int n)

```
{
if ( }\textrm{n}==0\mathrm{ ) return 0;
    if (n == 1) return 1;
    else
    return (Fib (n - 1) + Fib (n - 2));
}
```

(c) Sort the following list of elements using 'Insertion Sort'. Also, show intermediate steps.

$$
28,6,29,90,5,42,80
$$

(d) Write the recurrence relation for the best case of Quicksort algorithm and solve it using Master method.
2. (a) Write the pseudocode for computing GCD (m, n) and find its time complexity.
(b) Write the pseudocode for Breadth First Search (BFS) and traverse the following graph using BFS from starting node A.

3. (a) What is Greedy Technique ? Explain the types of problems solved by using this technique.
(b) Find the adjacency list for the following graph :

(c) With the help of an example, explain the 'Merge-Sort' technique.
4. (a) What is a single source shortest path problem ? Briefly explain the generic algorithm for solving it.
(b) Explain the following terms with an example for each :
(i) Complete Graph
(ii) Dynamic Programming Technique
5. (a) Find the minimum cost spanning tree for the following graph using Kruskal's algorithm :

(b) Define Recurrence Relation and Initial Condition for Factorial Function.

