BACHELOR OF COMPUTER APPLICATIONS
 (BCA) (Revised)

Term-End Examination

June, 2021

BCS-012 : BASIC MATHEMATICS

Time : 3 hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the remaining questions.

1. (a) If $\mathrm{A}=\left[\begin{array}{ll}1 & -2 \\ 2 & -1\end{array}\right]$; $\mathrm{B}=\left[\begin{array}{rr}\mathrm{a} & 1 \\ \mathrm{~b} & -1\end{array}\right]$ and
$(A+B)^{2}=A^{2}+B^{2}$, find a and b.
(b) If the first term of an AP is 22, the common difference is -4 , and the sum to n terms is 64 , find n .
(c) Find the angle between the lines

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}_{1}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}+\mathrm{t}(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \\
& \overrightarrow{\mathrm{r}_{2}}=3 \hat{\mathrm{i}}-5 \hat{\mathrm{k}}+\mathrm{s}(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})
\end{aligned}
$$

(d) If α, β are roots of $x^{2}-2 k x+k^{2}-1=0$, and $\alpha^{2}+\beta^{2}=10$, find k.
(e) If $y=1+\ln \left(x+\sqrt{x^{2}+1}\right)$, prove that

$$
\begin{equation*}
\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=0 \tag{5}
\end{equation*}
$$

(f) Find the points of discontinuity of the following function :

$$
f(x)=\left\{\begin{array}{cc}
x^{2}, & x>0 \\
x+3, & x \leq 0
\end{array}\right.
$$

(g) Solve the inequality $\frac{5}{|x-3|}<7$.
(h) Evaluate the integral

$$
I=\int \frac{x^{2}}{(1+x)^{3}} d x
$$

2. (a) Use the principle of mathematical induction to show that
$2+2^{2}+\ldots+2^{\mathrm{n}}=2^{\mathrm{n}+1}-2$ for each natural number n.
(b) Using determinant, find the area of the triangle whose vertices are (1, 2); (-2, 3) and $(-3,-4)$.
(c) Draw the graph of the solution set for the following inequalities :

$$
2 x+y \geq 8, x+2 y \geq 8 \text { and } x+y \leq 6
$$

(d) Use De Moivre's theorem to find $(\mathrm{i}+\sqrt{3})^{3}$. 5
3. (a) Find the absolute maximum and minimum of the following function :

$$
\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}^{3}}{\mathrm{x}+2} \text { on }[-1,1]
$$

(b) Reduce the matrix $A=\left[\begin{array}{rrr}5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0\end{array}\right]$ to normal form and hence find its rank.
(c) If $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}} ; \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\vec{c}=\hat{i}+2 \hat{j}-\hat{k}$; verify that

$$
\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}
$$

(d) Find the length of function $\mathrm{y}=3-2 \mathrm{x}$ from $(0,3)$ to $(2,-1)$ using integration.
4. (a) Find the quadratic equation with real coefficients and with the following pair of roots:

$$
\left(\frac{\mathrm{m}-\mathrm{n}}{\mathrm{~m}+\mathrm{n}}\right) ;\left(\frac{\mathrm{m}+\mathrm{n}}{\mathrm{~m}-\mathrm{n}}\right)
$$

(b) If $x=a+b, y=a \omega+b \omega^{2}, z=a \omega^{2}+b \omega$ (where ω is a cube root of unity and $\omega \neq 1$), show that $x y z=a^{3}+b^{3}$.
(c) Solve the following system of linear equations using Cramer's rule:

$$
x+y=0 ; y+z=1 ; z+x=3
$$

(d) If $y=\ln \left[e^{x}\left(\frac{x-2}{x+2}\right)^{3 / 4}\right]$, find $\frac{d y}{d x}$.
5. (a) A software development company took the designing and development job of a website. The designing job fetches the company ₹ 2,000 per hour and development job fetches them ₹ 1,500 per hour. The company can devote at most 20 hours per day for designing and atmost 15 hours for development of website. If total hours available for a day is at most 30 , find the maximum revenue the software company can get per day.
(b) Evaluate $\int \mathrm{x} \sqrt{3-2 \mathrm{x}} \mathrm{dx}$.
(c) Find the vector and Cartesian equations of the line passing through the points $(-2,0,3)$ and (3, 5, - 2).

